6-[3-(4-Fluorophenyl)-1H-pyrazol-4-yl]-3-[(2-naphthyloxy)methyl][1,2,4]triazolo[3,4-b][1,3,4]thiadiazole as a potent antioxidant and an anticancer agent induces growth inhibition followed by apoptosis in HepG2 cells

Research output: Contribution to journalArticle

46 Citations (Scopus)

Abstract

In this paper we have investigated the in vitro antioxidant property of two triazolo-thiadiazoles, 6-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-3-[(2-naphthyloxy)methyl][1,2,4]triazolo[3,4-b][1,3,4]thiadiazole (FPNT) and 6-[3-(4-chlororophenyl)-1H-pyrazol-4-yl]-3-[(phenyloxy)methyl][1,2,4]triazolo[3,4-b][1,3,4]thiadiazole (CPPT) by spectrophotometric DPPH and ABTS radical scavenging methods as well as by lipid peroxide assay. The anticancer activity along with possible mechanism of action of triazolo-thiadiazoles in Hep G2 cells was explored using MTT assay, [3H] thymidine assay, flow cytometry and chromatin condensation studies. Both FPNT and CPPT exhibited a dose dependent cytotoxic effect on hepatocellular carcinoma cell line, HepG2. The IC50 value was very low for both the compounds when compared to standard drug, doxorubicin. Incorporation of [3H] thymidine in conjunction with cell cycle analysis suggested that FPNT inhibited the growth of HepG2 cells. Flow cytometric studies revealed more percentage of cells in sub-G1 phase, indicating apoptosis, which was further confirmed through chromatin condensation studies by Hoechst staining. FPNT was found to be a potent antioxidant when compared to the standard in DPPH, ABTS radical scavenging assays and lipid peroxidation studies.

Original languageEnglish
Pages (from-to)211-217
Number of pages7
JournalArabian Journal of Chemistry
Volume3
Issue number4
DOIs
Publication statusPublished - 10-2010

All Science Journal Classification (ASJC) codes

  • Chemical Engineering(all)
  • Chemistry(all)

Fingerprint Dive into the research topics of '6-[3-(4-Fluorophenyl)-1H-pyrazol-4-yl]-3-[(2-naphthyloxy)methyl][1,2,4]triazolo[3,4-b][1,3,4]thiadiazole as a potent antioxidant and an anticancer agent induces growth inhibition followed by apoptosis in HepG2 cells'. Together they form a unique fingerprint.

  • Cite this