Aceclofenac ethosomes for enhanced transdermal delivery: 2nd International Conference on Biomedical and Pharmaceutical Engineering, ICBPE 2009

S. Lewis, V. Dave, BioMed Central - The Open Access Publisher; simpleware

Research output: Contribution to conferencePaper

2 Citations (Scopus)


The oral administration of aceclofenac has often resulted in side effects with chronic use. Using the transdermal route eliminates these side effects. Aceclofenac ethosomes were prepared and incorporated into a gel to enhance the skin permeability of aceclofenac. Ethosomal system comprised of phospholipids, ethanol, propylene glycol and lecithin. Different formulations were prepared with varying concentrations of lecithin and ethanol. The optical microscopy confirmed the formulation of multilamellar vesicles. The vesicle size of the ethosomes ranged between 0.696-1.140μm. Surface morphology was conducted by scanning electron microscopy. The entrapment efficiency was determined by centrifugation method. Effect of ethanol and lecithin concentration on entrapment of ethosomes was observed. Franz diffusion cell was used to evaluate the in vitro transdermal permeability of aceclofenac ethosomes. The studies were carried out using mouse skin as well as commercial sigma membrane. The in vitro drug permeation of the optimised formulation was compared with commercial conventional gel-Ziynac gel. The flux values of different ethosomal formulation were observed between 116.5μg/cm2/hr to 226.15μg/cm2 /hr. Formulation 5 showed maximum J value 226.1 as compared to marketed one 131.5μg/cm2 /hr. From the results of the present study it can be concluded that ethosomes improve the transdermal flux, prolong the release and represent an active carrier for sustained transdermal delivery. ©2009 IEEE.
Original languageEnglish
Publication statusPublished - 2009


Cite this