Arithmetic identities of Ramanujan's general partition function for modulo 17

Shruthi, B. R. Srivatsa Kumar

Research output: Contribution to journalArticle

Abstract

In this paper, we prove four infinite families of congruences modulo 17 for the general partition function pr(n) for negative values of r. Our emphasis throughout this paper is to exhibit the use of q-identities to generate congruences for the general partition function.

Original languageEnglish
Pages (from-to)625-630
Number of pages6
JournalProceedings of the Jangjeon Mathematical Society
Volume22
Issue number4
DOIs
Publication statusPublished - 01-01-2019
Externally publishedYes

Fingerprint

Ramanujan
Partition Function
Congruence
Modulo
Family

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

@article{718a64b43adb4516b309534e396bd77e,
title = "Arithmetic identities of Ramanujan's general partition function for modulo 17",
abstract = "In this paper, we prove four infinite families of congruences modulo 17 for the general partition function pr(n) for negative values of r. Our emphasis throughout this paper is to exhibit the use of q-identities to generate congruences for the general partition function.",
author = "Shruthi and {Srivatsa Kumar}, {B. R.}",
year = "2019",
month = "1",
day = "1",
doi = "10.17777/pjms2019.22.4.625",
language = "English",
volume = "22",
pages = "625--630",
journal = "Proceedings of the Jangjeon Mathematical Society",
issn = "1598-7264",
publisher = "Jangjeon Mathematical Society",
number = "4",

}

Arithmetic identities of Ramanujan's general partition function for modulo 17. / Shruthi; Srivatsa Kumar, B. R.

In: Proceedings of the Jangjeon Mathematical Society, Vol. 22, No. 4, 01.01.2019, p. 625-630.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Arithmetic identities of Ramanujan's general partition function for modulo 17

AU - Shruthi,

AU - Srivatsa Kumar, B. R.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - In this paper, we prove four infinite families of congruences modulo 17 for the general partition function pr(n) for negative values of r. Our emphasis throughout this paper is to exhibit the use of q-identities to generate congruences for the general partition function.

AB - In this paper, we prove four infinite families of congruences modulo 17 for the general partition function pr(n) for negative values of r. Our emphasis throughout this paper is to exhibit the use of q-identities to generate congruences for the general partition function.

UR - http://www.scopus.com/inward/record.url?scp=85075355377&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85075355377&partnerID=8YFLogxK

U2 - 10.17777/pjms2019.22.4.625

DO - 10.17777/pjms2019.22.4.625

M3 - Article

AN - SCOPUS:85075355377

VL - 22

SP - 625

EP - 630

JO - Proceedings of the Jangjeon Mathematical Society

JF - Proceedings of the Jangjeon Mathematical Society

SN - 1598-7264

IS - 4

ER -