Biomarker Profiling for Pyridoxine Dependent Epilepsy in Dried Blood Spots by HILIC-ESI-MS

Elizabeth Mary Mathew, Sudheer Moorkoth, Leslie Lewis, Pragna Rao

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Pyridoxine dependent epilepsy is a condition where the affected infant or child has prolonged seizures (status epilepticus), which are nonresponsive to anticonvulsant therapy but can be treated with pharmacological doses of pyridoxine. If identified earlier and treated prophylactically with pyridoxine, severe brain damage due to seizures can be prevented. Alpha-amino adipic semialdehyde (AASA), piperidine-6-carboxylic acid (P6C), and pipecolic acid (PA) are known biomarkers of pyridoxine dependent epilepsy. We report the development and validation of a hydrophilic interaction liquid chromatography (HILIC) hyphenated with mass spectroscopy for the quantification of the above analytes from dried blood spot samples. The samples were extracted using methanol and analysed on a iHILIC fusion plus column with formic acid buffer (pH 2.5): acetonitrile (20:80) at a flow rate of 0.5 mL/min within 3 minutes. The method demonstrated a LOD of 10 ng/mL, LOQ of 50 ng/mL, linearity of r2 ≥ 0.990, and recovery of 92-101.98% for all analytes. The intra- and interday precision CVs were < 8% and 6%, respectively. Extensive stability studies demonstrated that the analytes were stable in stock solution and in matrix when stored at -80°C. We performed method comparison studies of the developed method with the literature reported method using normal samples and matrix matched spiked samples at pathological concentrations to mimic clinical validity. The Bland-Altman analysis for comparison of the analytical suitability of the method for the biomarkers in healthy and spiked samples with the literature reported method revealed a bias which suggested that the method was comparable. The newly developed method involves no derivatisation and has a simple sample preparation and a low run time enabling it to be easily automated with a high sample throughput in a cost-effective manner.

Original languageEnglish
Article number2583215
JournalInternational Journal of Analytical Chemistry
Volume2018
DOIs
Publication statusPublished - 01-01-2018

Fingerprint

Pyridoxine
Liquid chromatography
Biomarkers
Blood
formic acid
Carboxylic Acids
Anticonvulsants
Methanol
Brain
Buffers
Fusion reactions
Flow rate
Throughput
Spectroscopy
Recovery
Costs

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry

Cite this

@article{54f5abc6b3b645fc8b2507663c296376,
title = "Biomarker Profiling for Pyridoxine Dependent Epilepsy in Dried Blood Spots by HILIC-ESI-MS",
abstract = "Pyridoxine dependent epilepsy is a condition where the affected infant or child has prolonged seizures (status epilepticus), which are nonresponsive to anticonvulsant therapy but can be treated with pharmacological doses of pyridoxine. If identified earlier and treated prophylactically with pyridoxine, severe brain damage due to seizures can be prevented. Alpha-amino adipic semialdehyde (AASA), piperidine-6-carboxylic acid (P6C), and pipecolic acid (PA) are known biomarkers of pyridoxine dependent epilepsy. We report the development and validation of a hydrophilic interaction liquid chromatography (HILIC) hyphenated with mass spectroscopy for the quantification of the above analytes from dried blood spot samples. The samples were extracted using methanol and analysed on a iHILIC fusion plus column with formic acid buffer (pH 2.5): acetonitrile (20:80) at a flow rate of 0.5 mL/min within 3 minutes. The method demonstrated a LOD of 10 ng/mL, LOQ of 50 ng/mL, linearity of r2 ≥ 0.990, and recovery of 92-101.98{\%} for all analytes. The intra- and interday precision CVs were < 8{\%} and 6{\%}, respectively. Extensive stability studies demonstrated that the analytes were stable in stock solution and in matrix when stored at -80°C. We performed method comparison studies of the developed method with the literature reported method using normal samples and matrix matched spiked samples at pathological concentrations to mimic clinical validity. The Bland-Altman analysis for comparison of the analytical suitability of the method for the biomarkers in healthy and spiked samples with the literature reported method revealed a bias which suggested that the method was comparable. The newly developed method involves no derivatisation and has a simple sample preparation and a low run time enabling it to be easily automated with a high sample throughput in a cost-effective manner.",
author = "Mathew, {Elizabeth Mary} and Sudheer Moorkoth and Leslie Lewis and Pragna Rao",
year = "2018",
month = "1",
day = "1",
doi = "10.1155/2018/2583215",
language = "English",
volume = "2018",
journal = "International Journal of Analytical Chemistry",
issn = "1687-8760",
publisher = "Hindawi Publishing Corporation",

}

TY - JOUR

T1 - Biomarker Profiling for Pyridoxine Dependent Epilepsy in Dried Blood Spots by HILIC-ESI-MS

AU - Mathew, Elizabeth Mary

AU - Moorkoth, Sudheer

AU - Lewis, Leslie

AU - Rao, Pragna

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Pyridoxine dependent epilepsy is a condition where the affected infant or child has prolonged seizures (status epilepticus), which are nonresponsive to anticonvulsant therapy but can be treated with pharmacological doses of pyridoxine. If identified earlier and treated prophylactically with pyridoxine, severe brain damage due to seizures can be prevented. Alpha-amino adipic semialdehyde (AASA), piperidine-6-carboxylic acid (P6C), and pipecolic acid (PA) are known biomarkers of pyridoxine dependent epilepsy. We report the development and validation of a hydrophilic interaction liquid chromatography (HILIC) hyphenated with mass spectroscopy for the quantification of the above analytes from dried blood spot samples. The samples were extracted using methanol and analysed on a iHILIC fusion plus column with formic acid buffer (pH 2.5): acetonitrile (20:80) at a flow rate of 0.5 mL/min within 3 minutes. The method demonstrated a LOD of 10 ng/mL, LOQ of 50 ng/mL, linearity of r2 ≥ 0.990, and recovery of 92-101.98% for all analytes. The intra- and interday precision CVs were < 8% and 6%, respectively. Extensive stability studies demonstrated that the analytes were stable in stock solution and in matrix when stored at -80°C. We performed method comparison studies of the developed method with the literature reported method using normal samples and matrix matched spiked samples at pathological concentrations to mimic clinical validity. The Bland-Altman analysis for comparison of the analytical suitability of the method for the biomarkers in healthy and spiked samples with the literature reported method revealed a bias which suggested that the method was comparable. The newly developed method involves no derivatisation and has a simple sample preparation and a low run time enabling it to be easily automated with a high sample throughput in a cost-effective manner.

AB - Pyridoxine dependent epilepsy is a condition where the affected infant or child has prolonged seizures (status epilepticus), which are nonresponsive to anticonvulsant therapy but can be treated with pharmacological doses of pyridoxine. If identified earlier and treated prophylactically with pyridoxine, severe brain damage due to seizures can be prevented. Alpha-amino adipic semialdehyde (AASA), piperidine-6-carboxylic acid (P6C), and pipecolic acid (PA) are known biomarkers of pyridoxine dependent epilepsy. We report the development and validation of a hydrophilic interaction liquid chromatography (HILIC) hyphenated with mass spectroscopy for the quantification of the above analytes from dried blood spot samples. The samples were extracted using methanol and analysed on a iHILIC fusion plus column with formic acid buffer (pH 2.5): acetonitrile (20:80) at a flow rate of 0.5 mL/min within 3 minutes. The method demonstrated a LOD of 10 ng/mL, LOQ of 50 ng/mL, linearity of r2 ≥ 0.990, and recovery of 92-101.98% for all analytes. The intra- and interday precision CVs were < 8% and 6%, respectively. Extensive stability studies demonstrated that the analytes were stable in stock solution and in matrix when stored at -80°C. We performed method comparison studies of the developed method with the literature reported method using normal samples and matrix matched spiked samples at pathological concentrations to mimic clinical validity. The Bland-Altman analysis for comparison of the analytical suitability of the method for the biomarkers in healthy and spiked samples with the literature reported method revealed a bias which suggested that the method was comparable. The newly developed method involves no derivatisation and has a simple sample preparation and a low run time enabling it to be easily automated with a high sample throughput in a cost-effective manner.

UR - http://www.scopus.com/inward/record.url?scp=85051591477&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85051591477&partnerID=8YFLogxK

U2 - 10.1155/2018/2583215

DO - 10.1155/2018/2583215

M3 - Article

VL - 2018

JO - International Journal of Analytical Chemistry

JF - International Journal of Analytical Chemistry

SN - 1687-8760

M1 - 2583215

ER -