Cortical auditory evoked potentials and hemispheric specialization of speech in individuals with learning disability and healthy controls

A preliminary study

Mayur Bhat, Hari Prakash Palaniswamy, Arivudai Nambi Pichaimuthu, Nitha Thomas

Research output: Contribution to journalArticle

Abstract

Background: Dichotic listening (DL) technique is a behavioral non-invasive tool which is used in studying hemispheric lateralization. Previous studies using behavioral DL have hypothesized that individuals with learning disabilities (LD) exhibit a lack of cortical specialization for processing speech stimulus. However, there is no event related potential (ERP) evidence, hence the main objective of the study is to explore hemispheric asymmetry using cortical auditory evoked potential (CAEPs) in normal hearing adults and also to compare the same in children with LD and healthy controls. Methods: CAEPs were recorded in 16 normal hearing young adults, eight right-handed children with LD and their age matched controls. Two stop constants (/Pa/ - voiceless, bilabial, stop: /Ta/ - voiceless, alveolar, stop) were chosen for this experiment and presented in each ear and dichotically in two different orders (/pa-ta/, /ta-pa/). ERPs were processed using a standard pipeline, and electrodes readings over the left and right hemispheres were averaged to create left and right regions of interest (ROI). The CAEPs were analyzed for mean amplitude and peak latency of P1-N1-P2 components. Results: The current study results suggest no statistically significant difference between the two stimulus in monaural condition and absence of order effect in dichotic condition. In healthy controls the CAEP latencies were shorter over the left hemisphere in both monaural and dichotic conditions in adults and control children. However, it was very evident that such a difference was lacking in children with LD. Conclusions: Hemispheric asymmetry can be detected using CAEPs for speech stimulus. The measures are consistent and void of stimulus or order effect. Taken together, the findings of current study, both monaural and dichotic condition illustrates the hemispheric differences in processing speech stimuli in normal hearers. Absence of latency differences between hemispheres in children with LD indicate a lack of hemispheric asymmetry.

Original languageEnglish
Number of pages1
JournalF1000Research
Volume7
DOIs
Publication statusPublished - 01-01-2018

Fingerprint

Cerebral Dominance
Auditory Evoked Potentials
Learning Disorders
Bioelectric potentials
Disabled Children
Speech processing
Audition
Hearing
Enterprise resource planning
Evoked Potentials
Ear
Reading
Young Adult
Electrodes
Pipelines
Experiments

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Cite this

@article{45a29770b32a4d32881e4d5235b836e4,
title = "Cortical auditory evoked potentials and hemispheric specialization of speech in individuals with learning disability and healthy controls: A preliminary study",
abstract = "Background: Dichotic listening (DL) technique is a behavioral non-invasive tool which is used in studying hemispheric lateralization. Previous studies using behavioral DL have hypothesized that individuals with learning disabilities (LD) exhibit a lack of cortical specialization for processing speech stimulus. However, there is no event related potential (ERP) evidence, hence the main objective of the study is to explore hemispheric asymmetry using cortical auditory evoked potential (CAEPs) in normal hearing adults and also to compare the same in children with LD and healthy controls. Methods: CAEPs were recorded in 16 normal hearing young adults, eight right-handed children with LD and their age matched controls. Two stop constants (/Pa/ - voiceless, bilabial, stop: /Ta/ - voiceless, alveolar, stop) were chosen for this experiment and presented in each ear and dichotically in two different orders (/pa-ta/, /ta-pa/). ERPs were processed using a standard pipeline, and electrodes readings over the left and right hemispheres were averaged to create left and right regions of interest (ROI). The CAEPs were analyzed for mean amplitude and peak latency of P1-N1-P2 components. Results: The current study results suggest no statistically significant difference between the two stimulus in monaural condition and absence of order effect in dichotic condition. In healthy controls the CAEP latencies were shorter over the left hemisphere in both monaural and dichotic conditions in adults and control children. However, it was very evident that such a difference was lacking in children with LD. Conclusions: Hemispheric asymmetry can be detected using CAEPs for speech stimulus. The measures are consistent and void of stimulus or order effect. Taken together, the findings of current study, both monaural and dichotic condition illustrates the hemispheric differences in processing speech stimuli in normal hearers. Absence of latency differences between hemispheres in children with LD indicate a lack of hemispheric asymmetry.",
author = "Mayur Bhat and Palaniswamy, {Hari Prakash} and Pichaimuthu, {Arivudai Nambi} and Nitha Thomas",
year = "2018",
month = "1",
day = "1",
doi = "10.12688/f1000research.17029.1",
language = "English",
volume = "7",
journal = "F1000Research",
issn = "2046-1402",
publisher = "F1000 Research Ltd.",

}

Cortical auditory evoked potentials and hemispheric specialization of speech in individuals with learning disability and healthy controls : A preliminary study. / Bhat, Mayur; Palaniswamy, Hari Prakash; Pichaimuthu, Arivudai Nambi; Thomas, Nitha.

In: F1000Research, Vol. 7, 01.01.2018.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Cortical auditory evoked potentials and hemispheric specialization of speech in individuals with learning disability and healthy controls

T2 - A preliminary study

AU - Bhat, Mayur

AU - Palaniswamy, Hari Prakash

AU - Pichaimuthu, Arivudai Nambi

AU - Thomas, Nitha

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Background: Dichotic listening (DL) technique is a behavioral non-invasive tool which is used in studying hemispheric lateralization. Previous studies using behavioral DL have hypothesized that individuals with learning disabilities (LD) exhibit a lack of cortical specialization for processing speech stimulus. However, there is no event related potential (ERP) evidence, hence the main objective of the study is to explore hemispheric asymmetry using cortical auditory evoked potential (CAEPs) in normal hearing adults and also to compare the same in children with LD and healthy controls. Methods: CAEPs were recorded in 16 normal hearing young adults, eight right-handed children with LD and their age matched controls. Two stop constants (/Pa/ - voiceless, bilabial, stop: /Ta/ - voiceless, alveolar, stop) were chosen for this experiment and presented in each ear and dichotically in two different orders (/pa-ta/, /ta-pa/). ERPs were processed using a standard pipeline, and electrodes readings over the left and right hemispheres were averaged to create left and right regions of interest (ROI). The CAEPs were analyzed for mean amplitude and peak latency of P1-N1-P2 components. Results: The current study results suggest no statistically significant difference between the two stimulus in monaural condition and absence of order effect in dichotic condition. In healthy controls the CAEP latencies were shorter over the left hemisphere in both monaural and dichotic conditions in adults and control children. However, it was very evident that such a difference was lacking in children with LD. Conclusions: Hemispheric asymmetry can be detected using CAEPs for speech stimulus. The measures are consistent and void of stimulus or order effect. Taken together, the findings of current study, both monaural and dichotic condition illustrates the hemispheric differences in processing speech stimuli in normal hearers. Absence of latency differences between hemispheres in children with LD indicate a lack of hemispheric asymmetry.

AB - Background: Dichotic listening (DL) technique is a behavioral non-invasive tool which is used in studying hemispheric lateralization. Previous studies using behavioral DL have hypothesized that individuals with learning disabilities (LD) exhibit a lack of cortical specialization for processing speech stimulus. However, there is no event related potential (ERP) evidence, hence the main objective of the study is to explore hemispheric asymmetry using cortical auditory evoked potential (CAEPs) in normal hearing adults and also to compare the same in children with LD and healthy controls. Methods: CAEPs were recorded in 16 normal hearing young adults, eight right-handed children with LD and their age matched controls. Two stop constants (/Pa/ - voiceless, bilabial, stop: /Ta/ - voiceless, alveolar, stop) were chosen for this experiment and presented in each ear and dichotically in two different orders (/pa-ta/, /ta-pa/). ERPs were processed using a standard pipeline, and electrodes readings over the left and right hemispheres were averaged to create left and right regions of interest (ROI). The CAEPs were analyzed for mean amplitude and peak latency of P1-N1-P2 components. Results: The current study results suggest no statistically significant difference between the two stimulus in monaural condition and absence of order effect in dichotic condition. In healthy controls the CAEP latencies were shorter over the left hemisphere in both monaural and dichotic conditions in adults and control children. However, it was very evident that such a difference was lacking in children with LD. Conclusions: Hemispheric asymmetry can be detected using CAEPs for speech stimulus. The measures are consistent and void of stimulus or order effect. Taken together, the findings of current study, both monaural and dichotic condition illustrates the hemispheric differences in processing speech stimuli in normal hearers. Absence of latency differences between hemispheres in children with LD indicate a lack of hemispheric asymmetry.

UR - http://www.scopus.com/inward/record.url?scp=85065011731&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85065011731&partnerID=8YFLogxK

U2 - 10.12688/f1000research.17029.1

DO - 10.12688/f1000research.17029.1

M3 - Article

VL - 7

JO - F1000Research

JF - F1000Research

SN - 2046-1402

ER -