Abstract
A 1 × 2 silicon switch-cum-splitter in the telecommunication C-band is proposed and simulated in the present work. The switch element uses phase transition in phase change material (PCM) when embedded in Metal-Insulator-Silicon-Insulator-Metal (MISIM) waveguide and exhibits 1 × 2 switching between the input and the output ports, and also shows 8.05 dB (6.34 dB) power division depending on the phase of VO2 (GST), respectively. However, during switching 14.36 dB (10.08 dB) extinction ratio is achieved. In principle, the switch-cum-splitter is governed by the direct tailoring of the quasi-TM modes within MISIM waveguides while appropriate PCM phases, impedances of the waveguide sections and positioning of the PCM block on the MISIM waveguides are all taken into account, which have been demonstrated and analyzed through FEM based COMSOL numerical simulations.
Original language | English |
---|---|
Pages (from-to) | 902-908 |
Number of pages | 7 |
Journal | Optik |
Volume | 178 |
DOIs | |
Publication status | Published - 01-02-2019 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Electrical and Electronic Engineering