TY - JOUR
T1 - Enhanced thermoelectric performance of Pb doped Cu2SnSe3 synthesized employing spark plasma sintering
AU - Shyam Prasad, K.
AU - Rao, Ashok
AU - Tyagi, Kriti
AU - Singh Chauhan, Nagendra
AU - Gahtori, Bhasker
AU - Bathula, Sivaiah
AU - Dhar, Ajay
PY - 2017/5/1
Y1 - 2017/5/1
N2 - We report an enhancement in the thermoelectric performance of Cu2SnSe3 alloy on Pb doping, owing to a sharp increase in its power factor. The powder XRD pattern of all samples of Cu2Sn1−xPbxSe3 (0≤x≤0.03), prepared using solid state reaction, exhibited a cubic structure with a space group of F4̅3m. The results show that temperature dependent electrical resistivity, ρ(T) increases with increasing temperature thereby demonstrating that the samples display heavily doped semiconducting nature, which could be satisfactorily described by small polaron hopping model in the whole temperature range of measurement for all the samples. Both the resistivity and the Seebeck coefficient are reduced with 2 vol% Pb doping. The thermal conductivity of all the samples reduces with increasing temperature. Despite a decrease in Seebeck coefficient the power factor shows an increase on Pb doping, owing to a sharp surge in the electrical conductivity which results in an enhanced ZTmax ~0.64 at 700 K for an optimized composition of Cu2Sn0.98Pb0.02Se3, which is nearly twice the value of the corresponding undoped counterpart.
AB - We report an enhancement in the thermoelectric performance of Cu2SnSe3 alloy on Pb doping, owing to a sharp increase in its power factor. The powder XRD pattern of all samples of Cu2Sn1−xPbxSe3 (0≤x≤0.03), prepared using solid state reaction, exhibited a cubic structure with a space group of F4̅3m. The results show that temperature dependent electrical resistivity, ρ(T) increases with increasing temperature thereby demonstrating that the samples display heavily doped semiconducting nature, which could be satisfactorily described by small polaron hopping model in the whole temperature range of measurement for all the samples. Both the resistivity and the Seebeck coefficient are reduced with 2 vol% Pb doping. The thermal conductivity of all the samples reduces with increasing temperature. Despite a decrease in Seebeck coefficient the power factor shows an increase on Pb doping, owing to a sharp surge in the electrical conductivity which results in an enhanced ZTmax ~0.64 at 700 K for an optimized composition of Cu2Sn0.98Pb0.02Se3, which is nearly twice the value of the corresponding undoped counterpart.
UR - http://www.scopus.com/inward/record.url?scp=85013192624&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85013192624&partnerID=8YFLogxK
U2 - 10.1016/j.physb.2017.02.021
DO - 10.1016/j.physb.2017.02.021
M3 - Article
AN - SCOPUS:85013192624
SN - 0921-4526
VL - 512
SP - 39
EP - 44
JO - Physica B: Condensed Matter
JF - Physica B: Condensed Matter
ER -