Enhanced thermoelectric performance of Pb doped Cu2SnSe3 synthesized employing spark plasma sintering

K. Shyam Prasad, Ashok Rao, Kriti Tyagi, Nagendra Singh Chauhan, Bhasker Gahtori, Sivaiah Bathula, Ajay Dhar

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

We report an enhancement in the thermoelectric performance of Cu2SnSe3 alloy on Pb doping, owing to a sharp increase in its power factor. The powder XRD pattern of all samples of Cu2Sn1−xPbxSe3 (0≤x≤0.03), prepared using solid state reaction, exhibited a cubic structure with a space group of F4̅3m. The results show that temperature dependent electrical resistivity, ρ(T) increases with increasing temperature thereby demonstrating that the samples display heavily doped semiconducting nature, which could be satisfactorily described by small polaron hopping model in the whole temperature range of measurement for all the samples. Both the resistivity and the Seebeck coefficient are reduced with 2 vol% Pb doping. The thermal conductivity of all the samples reduces with increasing temperature. Despite a decrease in Seebeck coefficient the power factor shows an increase on Pb doping, owing to a sharp surge in the electrical conductivity which results in an enhanced ZTmax ~0.64 at 700 K for an optimized composition of Cu2Sn0.98Pb0.02Se3, which is nearly twice the value of the corresponding undoped counterpart.

Original languageEnglish
Pages (from-to)39-44
Number of pages6
JournalPhysica B: Condensed Matter
Volume512
DOIs
Publication statusPublished - 01-05-2017

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Enhanced thermoelectric performance of Pb doped Cu<sub>2</sub>SnSe<sub>3</sub> synthesized employing spark plasma sintering'. Together they form a unique fingerprint.

Cite this