Enhancing the efficacy of fluocinolone acetonide by encapsulating with PLGA nanoparticles and conjugating with linear PEG polymer

Joyce Pinto, Madiha Ahmad, Bharath Raja Guru

Research output: Contribution to journalArticle

Abstract

Fluocinolone acetonide (FA), a glucocorticoid is used to treat inflammation in the posterior segment of the eye. Due to short half-life and body clearance, it will not be able to give therapeutic effect for long time with a single injection. Formulating FA nanoparticles (NPs) or PEG conjugates can be an effective way to overcome these disadvantages. We prepared two formulations, FA loaded in PLGA nanoparticles (NPs-FA) and FA conjugated to linear PEG (PEG-FA). The NPs-FA were characterised for size and zeta potential using particle size analyser and shape and morphology by using scanning electron microscope (SEM). The amount of drug loaded per mg of NPs and in-vitro release of FA from NPs were calculated using reverse phase high pressure liquid chromatography (RP-HPLC). NPs synthesis was optimized with factorial and Response Surface Methodology (RSM). Chemically synthesized PEG-FA conjugates were characterized using H-NMR and purity of the conjugate was analysed using RP-HPLC. Visualization of cellular uptake of NPs was done by coumarin-6 loaded NPs under fluorescent microscope. RAW 264.7 macrophages were treated with NPs-FA and PEG-FA conjugates to study their effectiveness in inhibiting TNF-α levels compared to free FA treatment. Stability test confirmed that FA is more stable within NPs than in free form. Particle size and zeta potential were found to be 183.6 ± 12.47nm and −25.6 ± 4.4mV, respectively. 149.58 ± 11.3µg of FA was encapsulated per mg of NPs and 61 µg of FA was present per mg of PEG-FA conjugate. In vitro drug release study showed a sustained release of FA from the NPs for a period of 30 days. Fluorescent microscope images showed uptake of NPs by RAW 264.7 cells. TNF-α assay confirmed that substantial inhibition of TNF-α levels from both formulations compared to free FA. From the results, we conclude that new formulations will greatly reduce drug dosage and frequency of administration for long term treatment of inflammation in posterior part of the eye.

Original languageEnglish
Pages (from-to)1188-1211
Number of pages24
JournalJournal of Biomaterials Science, Polymer Edition
Volume30
Issue number13
DOIs
Publication statusPublished - 02-09-2019

Fingerprint

Fluocinolone Acetonide
Nanoparticles
Polyethylene glycols
Polymers
High pressure liquid chromatography
Zeta potential
polylactic acid-polyglycolic acid copolymer
Reverse-Phase Chromatography
Drug dosage
Microscopes
Particle Size
Particle size
Posterior Eye Segment
High Pressure Liquid Chromatography
Macrophages

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Bioengineering
  • Biomaterials
  • Biomedical Engineering

Cite this

@article{f9a25a21f733458ba19bb6a161ec5c4e,
title = "Enhancing the efficacy of fluocinolone acetonide by encapsulating with PLGA nanoparticles and conjugating with linear PEG polymer",
abstract = "Fluocinolone acetonide (FA), a glucocorticoid is used to treat inflammation in the posterior segment of the eye. Due to short half-life and body clearance, it will not be able to give therapeutic effect for long time with a single injection. Formulating FA nanoparticles (NPs) or PEG conjugates can be an effective way to overcome these disadvantages. We prepared two formulations, FA loaded in PLGA nanoparticles (NPs-FA) and FA conjugated to linear PEG (PEG-FA). The NPs-FA were characterised for size and zeta potential using particle size analyser and shape and morphology by using scanning electron microscope (SEM). The amount of drug loaded per mg of NPs and in-vitro release of FA from NPs were calculated using reverse phase high pressure liquid chromatography (RP-HPLC). NPs synthesis was optimized with factorial and Response Surface Methodology (RSM). Chemically synthesized PEG-FA conjugates were characterized using H-NMR and purity of the conjugate was analysed using RP-HPLC. Visualization of cellular uptake of NPs was done by coumarin-6 loaded NPs under fluorescent microscope. RAW 264.7 macrophages were treated with NPs-FA and PEG-FA conjugates to study their effectiveness in inhibiting TNF-α levels compared to free FA treatment. Stability test confirmed that FA is more stable within NPs than in free form. Particle size and zeta potential were found to be 183.6 ± 12.47nm and −25.6 ± 4.4mV, respectively. 149.58 ± 11.3µg of FA was encapsulated per mg of NPs and 61 µg of FA was present per mg of PEG-FA conjugate. In vitro drug release study showed a sustained release of FA from the NPs for a period of 30 days. Fluorescent microscope images showed uptake of NPs by RAW 264.7 cells. TNF-α assay confirmed that substantial inhibition of TNF-α levels from both formulations compared to free FA. From the results, we conclude that new formulations will greatly reduce drug dosage and frequency of administration for long term treatment of inflammation in posterior part of the eye.",
author = "Joyce Pinto and Madiha Ahmad and Guru, {Bharath Raja}",
year = "2019",
month = "9",
day = "2",
doi = "10.1080/09205063.2019.1625524",
language = "English",
volume = "30",
pages = "1188--1211",
journal = "Journal of Biomaterials Science, Polymer Edition",
issn = "0920-5063",
publisher = "Taylor and Francis Ltd.",
number = "13",

}

Enhancing the efficacy of fluocinolone acetonide by encapsulating with PLGA nanoparticles and conjugating with linear PEG polymer. / Pinto, Joyce; Ahmad, Madiha; Guru, Bharath Raja.

In: Journal of Biomaterials Science, Polymer Edition, Vol. 30, No. 13, 02.09.2019, p. 1188-1211.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Enhancing the efficacy of fluocinolone acetonide by encapsulating with PLGA nanoparticles and conjugating with linear PEG polymer

AU - Pinto, Joyce

AU - Ahmad, Madiha

AU - Guru, Bharath Raja

PY - 2019/9/2

Y1 - 2019/9/2

N2 - Fluocinolone acetonide (FA), a glucocorticoid is used to treat inflammation in the posterior segment of the eye. Due to short half-life and body clearance, it will not be able to give therapeutic effect for long time with a single injection. Formulating FA nanoparticles (NPs) or PEG conjugates can be an effective way to overcome these disadvantages. We prepared two formulations, FA loaded in PLGA nanoparticles (NPs-FA) and FA conjugated to linear PEG (PEG-FA). The NPs-FA were characterised for size and zeta potential using particle size analyser and shape and morphology by using scanning electron microscope (SEM). The amount of drug loaded per mg of NPs and in-vitro release of FA from NPs were calculated using reverse phase high pressure liquid chromatography (RP-HPLC). NPs synthesis was optimized with factorial and Response Surface Methodology (RSM). Chemically synthesized PEG-FA conjugates were characterized using H-NMR and purity of the conjugate was analysed using RP-HPLC. Visualization of cellular uptake of NPs was done by coumarin-6 loaded NPs under fluorescent microscope. RAW 264.7 macrophages were treated with NPs-FA and PEG-FA conjugates to study their effectiveness in inhibiting TNF-α levels compared to free FA treatment. Stability test confirmed that FA is more stable within NPs than in free form. Particle size and zeta potential were found to be 183.6 ± 12.47nm and −25.6 ± 4.4mV, respectively. 149.58 ± 11.3µg of FA was encapsulated per mg of NPs and 61 µg of FA was present per mg of PEG-FA conjugate. In vitro drug release study showed a sustained release of FA from the NPs for a period of 30 days. Fluorescent microscope images showed uptake of NPs by RAW 264.7 cells. TNF-α assay confirmed that substantial inhibition of TNF-α levels from both formulations compared to free FA. From the results, we conclude that new formulations will greatly reduce drug dosage and frequency of administration for long term treatment of inflammation in posterior part of the eye.

AB - Fluocinolone acetonide (FA), a glucocorticoid is used to treat inflammation in the posterior segment of the eye. Due to short half-life and body clearance, it will not be able to give therapeutic effect for long time with a single injection. Formulating FA nanoparticles (NPs) or PEG conjugates can be an effective way to overcome these disadvantages. We prepared two formulations, FA loaded in PLGA nanoparticles (NPs-FA) and FA conjugated to linear PEG (PEG-FA). The NPs-FA were characterised for size and zeta potential using particle size analyser and shape and morphology by using scanning electron microscope (SEM). The amount of drug loaded per mg of NPs and in-vitro release of FA from NPs were calculated using reverse phase high pressure liquid chromatography (RP-HPLC). NPs synthesis was optimized with factorial and Response Surface Methodology (RSM). Chemically synthesized PEG-FA conjugates were characterized using H-NMR and purity of the conjugate was analysed using RP-HPLC. Visualization of cellular uptake of NPs was done by coumarin-6 loaded NPs under fluorescent microscope. RAW 264.7 macrophages were treated with NPs-FA and PEG-FA conjugates to study their effectiveness in inhibiting TNF-α levels compared to free FA treatment. Stability test confirmed that FA is more stable within NPs than in free form. Particle size and zeta potential were found to be 183.6 ± 12.47nm and −25.6 ± 4.4mV, respectively. 149.58 ± 11.3µg of FA was encapsulated per mg of NPs and 61 µg of FA was present per mg of PEG-FA conjugate. In vitro drug release study showed a sustained release of FA from the NPs for a period of 30 days. Fluorescent microscope images showed uptake of NPs by RAW 264.7 cells. TNF-α assay confirmed that substantial inhibition of TNF-α levels from both formulations compared to free FA. From the results, we conclude that new formulations will greatly reduce drug dosage and frequency of administration for long term treatment of inflammation in posterior part of the eye.

UR - http://www.scopus.com/inward/record.url?scp=85067597538&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067597538&partnerID=8YFLogxK

U2 - 10.1080/09205063.2019.1625524

DO - 10.1080/09205063.2019.1625524

M3 - Article

VL - 30

SP - 1188

EP - 1211

JO - Journal of Biomaterials Science, Polymer Edition

JF - Journal of Biomaterials Science, Polymer Edition

SN - 0920-5063

IS - 13

ER -