Epigallocatechin-3-gallate (EGCG) protects the oocytes from methyl parathion-induced cytoplasmic deformities by suppressing oxidative and endoplasmic reticulum stress

Shweta Hegde, Keerthana Karunakar Poojary, Rhea Rasquinha, Daphne Norma Crasta, Divya Gopalan, Srinivas Mutalik, Sazada Siddiqui, Satish Kumar Adiga, Guruprasad Kalthur

Research output: Contribution to journalArticle

Abstract

Methyl parathion (MP) is a commonly used organophosphorus insecticide in commercial farming. It is well known that MP exposure can affect the function of nervous, respiratory, cardiovascular and reproductive systems. In our previous report we have demonstrated that MP exposure results in poor oocyte maturation and defective embryo development which is mainly mediated through oxidative stress. The present investigation was designed to explore whether using a potent free radical scavenger like Epigallocatechin-3-gallate (EGCG) can help in reducing the detrimental effects of MP on the oocytes. For the study, germinal vesicle (GV) stage oocytes collected from the ovaries of adult Swiss albino mice were subjected to in vitro maturation (IVM) in the presence or absence of MP (100 μg/mL) and/or EGCG (0.25 μM). MP significantly reduced the nuclear maturation rate, and resulted in poor cytoplasmic organization which was evident from the altered distribution pattern of mitochondria, endoplasmic reticulum and abnormal spindle organization. These changes were associated with significant elevation in oxidative stress and expression of ER stress markers such as 78 kDa Glucose regulated protein (GRP78) as well as X-box binding protein-1 (XBP1) in the oocytes. Further, the oocytes exposed to MP had lower activation rate and developmental potential. Supplementation of EGCG during IVM not only improved the nuclear maturation rate but also reduced the cytoplasmic abnormalities. These beneficial effects appear to be due to mitigation of oxidative and ER stress in oocytes. In conclusion, results of our study indicate that EGCG can help in alleviating MP-induced oocyte abnormalities.

Original languageEnglish
Article number104588
JournalPesticide Biochemistry and Physiology
DOIs
Publication statusAccepted/In press - 01-01-2020

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Agronomy and Crop Science
  • Health, Toxicology and Mutagenesis

Cite this