TY - JOUR
T1 - Evaluation of oxidant stress and antioxidant defense in discrete brain regions of rats exposed to 900 MHz radiation
AU - Narayanan, S. N.
AU - Kumar, R. S.
AU - Kedage, V.
AU - Nalini, K.
AU - Nayak, S.
AU - Bhat, P. G.
PY - 2014
Y1 - 2014
N2 - Aim: In the current study, the effects of 900 MHz radio-frequency electromagnetic radiation (RF-EMR) on levels of thiobarbituric acid-reactive substances (TBARS), total antioxidants (TA), and glutathione S-transferase (GST) activity in discrete brain regions were studied in adolescent rats. Materials and methods: Thi rty-six male Wistar rats (6-8 weeks old) were allotted into three groups (n = 12 in each group). Control group (1) remained undisturbed in their home cage; sham group (2) was exposed to mobile phone in switch off mode for four weeks; RF-EMR-exposed group (3) was exposed to 900 MHz of RF-EMR (1 hr/day with peak power density of 146.60 μW/cm2) from an activated Global System for Mobile communication (GSM) mobile phone (kept in silent mode; no ring tone and no vibration) for four weeks. On 29th day, behavioral analysis was done. Followed by this, six animals from each group were sacrificed and biochemical parameters were studied in amygdala, hippocampus, frontal cortex, and cerebellum. Results: Altered behavioral performances were found in RF-EMR-exposed rats. Additionally, elevated TBARS level was found with all brain regions studied. RF-EMR exposure significantly decreased TA in the amygdala and cerebellum but its level was not significantly changed in other brain regions. GST activity was significantly decreased in the hippocampus but, its activity was unaltered in other brain regions studied. Conclusion: RF-EMR exposure for a month induced oxidative stress in rat brain, but its magnitude was different in different regions studied. RF-EMR-induced oxidative stress could be one of the underlying causes for the behavioral deficits seen in rats after RF-EMR exposure.
AB - Aim: In the current study, the effects of 900 MHz radio-frequency electromagnetic radiation (RF-EMR) on levels of thiobarbituric acid-reactive substances (TBARS), total antioxidants (TA), and glutathione S-transferase (GST) activity in discrete brain regions were studied in adolescent rats. Materials and methods: Thi rty-six male Wistar rats (6-8 weeks old) were allotted into three groups (n = 12 in each group). Control group (1) remained undisturbed in their home cage; sham group (2) was exposed to mobile phone in switch off mode for four weeks; RF-EMR-exposed group (3) was exposed to 900 MHz of RF-EMR (1 hr/day with peak power density of 146.60 μW/cm2) from an activated Global System for Mobile communication (GSM) mobile phone (kept in silent mode; no ring tone and no vibration) for four weeks. On 29th day, behavioral analysis was done. Followed by this, six animals from each group were sacrificed and biochemical parameters were studied in amygdala, hippocampus, frontal cortex, and cerebellum. Results: Altered behavioral performances were found in RF-EMR-exposed rats. Additionally, elevated TBARS level was found with all brain regions studied. RF-EMR exposure significantly decreased TA in the amygdala and cerebellum but its level was not significantly changed in other brain regions. GST activity was significantly decreased in the hippocampus but, its activity was unaltered in other brain regions studied. Conclusion: RF-EMR exposure for a month induced oxidative stress in rat brain, but its magnitude was different in different regions studied. RF-EMR-induced oxidative stress could be one of the underlying causes for the behavioral deficits seen in rats after RF-EMR exposure.
UR - http://www.scopus.com/inward/record.url?scp=84902014269&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84902014269&partnerID=8YFLogxK
U2 - 10.4149/BLL_2014_054
DO - 10.4149/BLL_2014_054
M3 - Article
C2 - 25174055
AN - SCOPUS:84902014269
SN - 0006-9248
VL - 115
SP - 260
EP - 266
JO - Bratislavske Lekarske Listy
JF - Bratislavske Lekarske Listy
IS - 5
ER -