Exploring deep insights into the interaction mechanism of a quinazoline derivative with mild steel in HCl: electrochemical, DFT, and molecular dynamic simulation studies

Abdelkarim Chaouiki, Hassane Lgaz, Saman Zehra, Rachid Salghi, Ill Min Chung, Yasmina El Aoufir, K. Subrahmanya Bhat, Ismat H. Ali, Santosh L. Gaonkar, Mohammad I. Khan, Hassan Oudda

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

A novel quinazoline derivative, 3-cyclopropyl-3,4-dihydroquinoline-2(1H)-One (CPHQ), was successfully designed and synthesized. Then, its corrosion inhibition behavior on carbon steel (CS) surface in 1.0 M HCl at different temperatures was investigated using chemical, electrochemical and theoretical techniques. The experiments confirmed that the studied inhibitor shows inhibition efficiency as high as 95% even at very low concentration of 5 × 10 −3 M. To ascertain the nature of adsorption of CPHQ molecules on CS surface, Langmuir adsorption isotherm model was best fitted. From potentiodynamic polarization (PDP) calculations, it was concluded that the CPHQ acted as a mixed type corrosion inhibitor. Electrochemical impedance spectroscopy (EIS) studies revealed that increase in CPHQ concentration, resulted in an increase in the polarization resistance with a simultaneous decrease in the double-layer capacitance values. PDP tests were also performed to understand the corrosion behavior of CS as a function of temperature without and with varying concentrations of CPHQ, at temperatures 303, 313, 323, and 333 K. It can be concluded that the corrosion inhibition effect was dependent on the concentration of the inhibitor and the solution temperature. In order to understand the basic insights of the action mode of CPHQ molecules, Density Functional Theory (DFT) method, and Molecular Dynamic (MD) simulations were also employed on the optimized structure of CPHQ.

Original languageEnglish
Pages (from-to)921-944
Number of pages24
JournalJournal of Adhesion Science and Technology
Volume33
Issue number9
DOIs
Publication statusPublished - 03-05-2019

Fingerprint

Quinazolines
Carbon steel
Density functional theory
Molecular dynamics
carbon steels
corrosion
steels
inhibitors
molecular dynamics
density functional theory
Derivatives
Potentiodynamic polarization
Computer simulation
Corrosion
polarization
simulation
interactions
Temperature
Molecules
adsorption

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Mechanics of Materials
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Materials Chemistry

Cite this

Chaouiki, Abdelkarim ; Lgaz, Hassane ; Zehra, Saman ; Salghi, Rachid ; Chung, Ill Min ; El Aoufir, Yasmina ; Bhat, K. Subrahmanya ; Ali, Ismat H. ; Gaonkar, Santosh L. ; Khan, Mohammad I. ; Oudda, Hassan. / Exploring deep insights into the interaction mechanism of a quinazoline derivative with mild steel in HCl : electrochemical, DFT, and molecular dynamic simulation studies. In: Journal of Adhesion Science and Technology. 2019 ; Vol. 33, No. 9. pp. 921-944.
@article{baa810611493448280cfee271fbdf31a,
title = "Exploring deep insights into the interaction mechanism of a quinazoline derivative with mild steel in HCl: electrochemical, DFT, and molecular dynamic simulation studies",
abstract = "A novel quinazoline derivative, 3-cyclopropyl-3,4-dihydroquinoline-2(1H)-One (CPHQ), was successfully designed and synthesized. Then, its corrosion inhibition behavior on carbon steel (CS) surface in 1.0 M HCl at different temperatures was investigated using chemical, electrochemical and theoretical techniques. The experiments confirmed that the studied inhibitor shows inhibition efficiency as high as 95{\%} even at very low concentration of 5 × 10 −3 M. To ascertain the nature of adsorption of CPHQ molecules on CS surface, Langmuir adsorption isotherm model was best fitted. From potentiodynamic polarization (PDP) calculations, it was concluded that the CPHQ acted as a mixed type corrosion inhibitor. Electrochemical impedance spectroscopy (EIS) studies revealed that increase in CPHQ concentration, resulted in an increase in the polarization resistance with a simultaneous decrease in the double-layer capacitance values. PDP tests were also performed to understand the corrosion behavior of CS as a function of temperature without and with varying concentrations of CPHQ, at temperatures 303, 313, 323, and 333 K. It can be concluded that the corrosion inhibition effect was dependent on the concentration of the inhibitor and the solution temperature. In order to understand the basic insights of the action mode of CPHQ molecules, Density Functional Theory (DFT) method, and Molecular Dynamic (MD) simulations were also employed on the optimized structure of CPHQ.",
author = "Abdelkarim Chaouiki and Hassane Lgaz and Saman Zehra and Rachid Salghi and Chung, {Ill Min} and {El Aoufir}, Yasmina and Bhat, {K. Subrahmanya} and Ali, {Ismat H.} and Gaonkar, {Santosh L.} and Khan, {Mohammad I.} and Hassan Oudda",
year = "2019",
month = "5",
day = "3",
doi = "10.1080/01694243.2018.1554764",
language = "English",
volume = "33",
pages = "921--944",
journal = "Journal of Adhesion Science and Technology",
issn = "0169-4243",
publisher = "Taylor and Francis Ltd.",
number = "9",

}

Exploring deep insights into the interaction mechanism of a quinazoline derivative with mild steel in HCl : electrochemical, DFT, and molecular dynamic simulation studies. / Chaouiki, Abdelkarim; Lgaz, Hassane; Zehra, Saman; Salghi, Rachid; Chung, Ill Min; El Aoufir, Yasmina; Bhat, K. Subrahmanya; Ali, Ismat H.; Gaonkar, Santosh L.; Khan, Mohammad I.; Oudda, Hassan.

In: Journal of Adhesion Science and Technology, Vol. 33, No. 9, 03.05.2019, p. 921-944.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Exploring deep insights into the interaction mechanism of a quinazoline derivative with mild steel in HCl

T2 - electrochemical, DFT, and molecular dynamic simulation studies

AU - Chaouiki, Abdelkarim

AU - Lgaz, Hassane

AU - Zehra, Saman

AU - Salghi, Rachid

AU - Chung, Ill Min

AU - El Aoufir, Yasmina

AU - Bhat, K. Subrahmanya

AU - Ali, Ismat H.

AU - Gaonkar, Santosh L.

AU - Khan, Mohammad I.

AU - Oudda, Hassan

PY - 2019/5/3

Y1 - 2019/5/3

N2 - A novel quinazoline derivative, 3-cyclopropyl-3,4-dihydroquinoline-2(1H)-One (CPHQ), was successfully designed and synthesized. Then, its corrosion inhibition behavior on carbon steel (CS) surface in 1.0 M HCl at different temperatures was investigated using chemical, electrochemical and theoretical techniques. The experiments confirmed that the studied inhibitor shows inhibition efficiency as high as 95% even at very low concentration of 5 × 10 −3 M. To ascertain the nature of adsorption of CPHQ molecules on CS surface, Langmuir adsorption isotherm model was best fitted. From potentiodynamic polarization (PDP) calculations, it was concluded that the CPHQ acted as a mixed type corrosion inhibitor. Electrochemical impedance spectroscopy (EIS) studies revealed that increase in CPHQ concentration, resulted in an increase in the polarization resistance with a simultaneous decrease in the double-layer capacitance values. PDP tests were also performed to understand the corrosion behavior of CS as a function of temperature without and with varying concentrations of CPHQ, at temperatures 303, 313, 323, and 333 K. It can be concluded that the corrosion inhibition effect was dependent on the concentration of the inhibitor and the solution temperature. In order to understand the basic insights of the action mode of CPHQ molecules, Density Functional Theory (DFT) method, and Molecular Dynamic (MD) simulations were also employed on the optimized structure of CPHQ.

AB - A novel quinazoline derivative, 3-cyclopropyl-3,4-dihydroquinoline-2(1H)-One (CPHQ), was successfully designed and synthesized. Then, its corrosion inhibition behavior on carbon steel (CS) surface in 1.0 M HCl at different temperatures was investigated using chemical, electrochemical and theoretical techniques. The experiments confirmed that the studied inhibitor shows inhibition efficiency as high as 95% even at very low concentration of 5 × 10 −3 M. To ascertain the nature of adsorption of CPHQ molecules on CS surface, Langmuir adsorption isotherm model was best fitted. From potentiodynamic polarization (PDP) calculations, it was concluded that the CPHQ acted as a mixed type corrosion inhibitor. Electrochemical impedance spectroscopy (EIS) studies revealed that increase in CPHQ concentration, resulted in an increase in the polarization resistance with a simultaneous decrease in the double-layer capacitance values. PDP tests were also performed to understand the corrosion behavior of CS as a function of temperature without and with varying concentrations of CPHQ, at temperatures 303, 313, 323, and 333 K. It can be concluded that the corrosion inhibition effect was dependent on the concentration of the inhibitor and the solution temperature. In order to understand the basic insights of the action mode of CPHQ molecules, Density Functional Theory (DFT) method, and Molecular Dynamic (MD) simulations were also employed on the optimized structure of CPHQ.

UR - http://www.scopus.com/inward/record.url?scp=85062354336&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85062354336&partnerID=8YFLogxK

U2 - 10.1080/01694243.2018.1554764

DO - 10.1080/01694243.2018.1554764

M3 - Article

AN - SCOPUS:85062354336

VL - 33

SP - 921

EP - 944

JO - Journal of Adhesion Science and Technology

JF - Journal of Adhesion Science and Technology

SN - 0169-4243

IS - 9

ER -