Fluoride rechargability of a non-resin auto-cured glass ionomer cement from a fluoridated dentifrice

An in vitro study

A. Rao, A. Rao, P. Sudha

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Background: In addition to their fluoride-releasing properties, glass ionomer cement (GICs) have the ability to reuptake and release fluorides from commonly used sources like fluoridated dentifrices. This property has the potential to provide a continuous low concentration of fluoride in the saliva aiding in caries prevention. The superior fluoride-recharging abilities of resin-modified GICs over conventional GICs have been documented. The manufacturer of a non-resin, auto-cured GIC (GC Fuji VII) claims fluoride release from the product to be about six times that of conventional GIC. It was hypothesized that perhaps this high fluoride release could translate into a high reuptake and release, when exposed to a 1 000 ppm fluoridated dentifrice every day, thus providing increased fluoride levels in saliva. Aims: This study therefore examined fluoride-recharging abilities of the non-resin, auto-cured glass ionomer cement from a 1 000 ppm fluoridated dentifrice and compared it with resin-modified glass ionomer cement. Materials and Methods: Twelve glass ionomer discs each of resin-modified glass ionomer cement (GC Fuji II L C, Group 1) and the non-resin, auto-cured glass ionomer cement (GC Fuji VII, Group 2) were prepared with precise dimensions of 9 x 2 mm. The 12 specimens in each group were further subdivided into two subgroups of six each. Subgroup A involved no fluoride treatment (Control). Subgroup B involved application of a 1 000 ppm dentifrice for 2 minutes twice daily with a soft toothbrush. The disc-specimens were then suspended in airtight plastic bottles containing exactly 20 ml double distilled water. The fluoride concentration of the water in which the specimen discs were immersed was measured by means of a fluoride ion selective electrode connected to an ion selective electrode meter/digital ion analyzer at 1, 2, 7, 15, and 30 days. Statistical Analysis: It was performed using the Kruskal-Wallis Test. Results and Conclusion: Fuji VII, despite a high fluoride release, did not significantly recharge when exposed to a 1 000 ppm fluoridated dentifrice.

Original languageEnglish
Pages (from-to)202-204
Number of pages3
JournalJournal of Indian Society of Pedodontics and Preventive Dentistry
Volume29
Issue number3
DOIs
Publication statusPublished - 01-07-2011

Fingerprint

Dentifrices
Glass Ionomer Cements
Fluorides
Ion-Selective Electrodes
Saliva
In Vitro Techniques
Water
Plastics

All Science Journal Classification (ASJC) codes

  • Dentistry(all)

Cite this

@article{4ed9374022b84dcf8364567b23abb6d4,
title = "Fluoride rechargability of a non-resin auto-cured glass ionomer cement from a fluoridated dentifrice: An in vitro study",
abstract = "Background: In addition to their fluoride-releasing properties, glass ionomer cement (GICs) have the ability to reuptake and release fluorides from commonly used sources like fluoridated dentifrices. This property has the potential to provide a continuous low concentration of fluoride in the saliva aiding in caries prevention. The superior fluoride-recharging abilities of resin-modified GICs over conventional GICs have been documented. The manufacturer of a non-resin, auto-cured GIC (GC Fuji VII) claims fluoride release from the product to be about six times that of conventional GIC. It was hypothesized that perhaps this high fluoride release could translate into a high reuptake and release, when exposed to a 1 000 ppm fluoridated dentifrice every day, thus providing increased fluoride levels in saliva. Aims: This study therefore examined fluoride-recharging abilities of the non-resin, auto-cured glass ionomer cement from a 1 000 ppm fluoridated dentifrice and compared it with resin-modified glass ionomer cement. Materials and Methods: Twelve glass ionomer discs each of resin-modified glass ionomer cement (GC Fuji II L C, Group 1) and the non-resin, auto-cured glass ionomer cement (GC Fuji VII, Group 2) were prepared with precise dimensions of 9 x 2 mm. The 12 specimens in each group were further subdivided into two subgroups of six each. Subgroup A involved no fluoride treatment (Control). Subgroup B involved application of a 1 000 ppm dentifrice for 2 minutes twice daily with a soft toothbrush. The disc-specimens were then suspended in airtight plastic bottles containing exactly 20 ml double distilled water. The fluoride concentration of the water in which the specimen discs were immersed was measured by means of a fluoride ion selective electrode connected to an ion selective electrode meter/digital ion analyzer at 1, 2, 7, 15, and 30 days. Statistical Analysis: It was performed using the Kruskal-Wallis Test. Results and Conclusion: Fuji VII, despite a high fluoride release, did not significantly recharge when exposed to a 1 000 ppm fluoridated dentifrice.",
author = "A. Rao and A. Rao and P. Sudha",
year = "2011",
month = "7",
day = "1",
doi = "10.4103/0970-4388.85812",
language = "English",
volume = "29",
pages = "202--204",
journal = "Journal of the Indian Society of Pedodontics and Preventive Dentistry",
issn = "0970-4388",
publisher = "Medknow Publications and Media Pvt. Ltd",
number = "3",

}

TY - JOUR

T1 - Fluoride rechargability of a non-resin auto-cured glass ionomer cement from a fluoridated dentifrice

T2 - An in vitro study

AU - Rao, A.

AU - Rao, A.

AU - Sudha, P.

PY - 2011/7/1

Y1 - 2011/7/1

N2 - Background: In addition to their fluoride-releasing properties, glass ionomer cement (GICs) have the ability to reuptake and release fluorides from commonly used sources like fluoridated dentifrices. This property has the potential to provide a continuous low concentration of fluoride in the saliva aiding in caries prevention. The superior fluoride-recharging abilities of resin-modified GICs over conventional GICs have been documented. The manufacturer of a non-resin, auto-cured GIC (GC Fuji VII) claims fluoride release from the product to be about six times that of conventional GIC. It was hypothesized that perhaps this high fluoride release could translate into a high reuptake and release, when exposed to a 1 000 ppm fluoridated dentifrice every day, thus providing increased fluoride levels in saliva. Aims: This study therefore examined fluoride-recharging abilities of the non-resin, auto-cured glass ionomer cement from a 1 000 ppm fluoridated dentifrice and compared it with resin-modified glass ionomer cement. Materials and Methods: Twelve glass ionomer discs each of resin-modified glass ionomer cement (GC Fuji II L C, Group 1) and the non-resin, auto-cured glass ionomer cement (GC Fuji VII, Group 2) were prepared with precise dimensions of 9 x 2 mm. The 12 specimens in each group were further subdivided into two subgroups of six each. Subgroup A involved no fluoride treatment (Control). Subgroup B involved application of a 1 000 ppm dentifrice for 2 minutes twice daily with a soft toothbrush. The disc-specimens were then suspended in airtight plastic bottles containing exactly 20 ml double distilled water. The fluoride concentration of the water in which the specimen discs were immersed was measured by means of a fluoride ion selective electrode connected to an ion selective electrode meter/digital ion analyzer at 1, 2, 7, 15, and 30 days. Statistical Analysis: It was performed using the Kruskal-Wallis Test. Results and Conclusion: Fuji VII, despite a high fluoride release, did not significantly recharge when exposed to a 1 000 ppm fluoridated dentifrice.

AB - Background: In addition to their fluoride-releasing properties, glass ionomer cement (GICs) have the ability to reuptake and release fluorides from commonly used sources like fluoridated dentifrices. This property has the potential to provide a continuous low concentration of fluoride in the saliva aiding in caries prevention. The superior fluoride-recharging abilities of resin-modified GICs over conventional GICs have been documented. The manufacturer of a non-resin, auto-cured GIC (GC Fuji VII) claims fluoride release from the product to be about six times that of conventional GIC. It was hypothesized that perhaps this high fluoride release could translate into a high reuptake and release, when exposed to a 1 000 ppm fluoridated dentifrice every day, thus providing increased fluoride levels in saliva. Aims: This study therefore examined fluoride-recharging abilities of the non-resin, auto-cured glass ionomer cement from a 1 000 ppm fluoridated dentifrice and compared it with resin-modified glass ionomer cement. Materials and Methods: Twelve glass ionomer discs each of resin-modified glass ionomer cement (GC Fuji II L C, Group 1) and the non-resin, auto-cured glass ionomer cement (GC Fuji VII, Group 2) were prepared with precise dimensions of 9 x 2 mm. The 12 specimens in each group were further subdivided into two subgroups of six each. Subgroup A involved no fluoride treatment (Control). Subgroup B involved application of a 1 000 ppm dentifrice for 2 minutes twice daily with a soft toothbrush. The disc-specimens were then suspended in airtight plastic bottles containing exactly 20 ml double distilled water. The fluoride concentration of the water in which the specimen discs were immersed was measured by means of a fluoride ion selective electrode connected to an ion selective electrode meter/digital ion analyzer at 1, 2, 7, 15, and 30 days. Statistical Analysis: It was performed using the Kruskal-Wallis Test. Results and Conclusion: Fuji VII, despite a high fluoride release, did not significantly recharge when exposed to a 1 000 ppm fluoridated dentifrice.

UR - http://www.scopus.com/inward/record.url?scp=80054700102&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80054700102&partnerID=8YFLogxK

U2 - 10.4103/0970-4388.85812

DO - 10.4103/0970-4388.85812

M3 - Article

VL - 29

SP - 202

EP - 204

JO - Journal of the Indian Society of Pedodontics and Preventive Dentistry

JF - Journal of the Indian Society of Pedodontics and Preventive Dentistry

SN - 0970-4388

IS - 3

ER -