Gelatin Nanofibers in Drug Delivery Systems and Tissue Engineering

Ashni Arun, Pratyusha Malrautu, Anindita Laha, Seeram Ramakrishna

Research output: Contribution to journalReview articlepeer-review

30 Citations (Scopus)

Abstract

Compared to conventional drug delivery systems (DDS), which show side effects due to uncontrollable properties of drug release, and nonspecific bio-distribution, smart DDS provide a regulated release for prolonged time and improve therapeutic efficacy. On the other hand, tissue engineering (TE) uses a combination of cells and ideal physicochemical and biochemical properties to renew different types of biological tissues. Both cases require an excellent polymer excipient to achieve controlled release of therapeutic agents to provide the correct matrix for cell proliferation. Besides the choice of polymer, the correct polymer excipient design should also be considered which demands the need for nanotechnology. Nanofibers fabricated from natural polymers are versatile due to their properties favorable for usage as scaffolds for TE, gene and drug delivery. Gelatin has been thoroughly looked into for biomedical applications because of its inherent biocompatibility, biodegradability and non-toxicity. In this review, we have focused on the potential of gelatin biopolymer-based nanofiber matrix in the application of DDS and TE.

Original languageEnglish
Pages (from-to)71-81
Number of pages11
JournalEngineered Science
Volume16
DOIs
Publication statusPublished - 2021

All Science Journal Classification (ASJC) codes

  • Engineering(all)
  • Physical and Theoretical Chemistry
  • Chemistry (miscellaneous)
  • Materials Science(all)
  • Energy Engineering and Power Technology
  • Artificial Intelligence
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Gelatin Nanofibers in Drug Delivery Systems and Tissue Engineering'. Together they form a unique fingerprint.

Cite this