Identification of protein secondary structures by laser induced autofluorescence

A study of urea and GnHCl induced protein denaturation

Manjunath Siddaramaiah, Satyamoorthy Kapaettu, Bola Sadashiva Satish Rao, Suparna Roy, Subhash Chandra, K. K. Mahato

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

In the present study an attempt has been made to interrogate the bulk secondary structures of some selected proteins (BSA, HSA, lysozyme, trypsin and ribonuclease A) under urea and GnHCl denaturation using laser induced autofluorescence. The proteins were treated with different concentrations of urea (3 M, 6 M, 9 M) and GnHCl (2 M, 4 M, 6 M) and the corresponding steady state autofluorescence spectra were recorded at 281 nm pulsed laser excitations. The recorded fluorescence spectra of proteins were then interpreted based on the existing PDB structures of the proteins and the Trp solvent accessibility (calculated using “Scratch protein predictor” at 30% threshold). Further, the influence of rigidity and conformation of the indole ring (caused by protein secondary structures) on the intrinsic fluorescence properties of proteins were also evaluated using fluorescence of ANS-HSA complexes, CD spectroscopy as well as with trypsin digestion experiments. The outcomes obtained clearly demonstrated GnHCl preferably disrupt helix as compared to the beta β-sheets whereas, urea found was more effective in disrupting β-sheets as compared to the helices. The other way round the proteins which have shown detectable change in the intrinsic fluorescence at lower concentrations of GnHCl were rich in helices whereas, the proteins which showed detectable change in the intrinsic fluorescence at lower concentrations of urea were rich in β-sheets. Since high salt concentrations like GnHCl and urea interfere in the secondary structure analysis by circular dichroism Spectrometry, the present method of analyzing secondary structures using laser induced autofluorescence will be highly advantageous over existing tools for the same.

Original languageEnglish
Pages (from-to)44-53
Number of pages10
JournalSpectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
Volume174
DOIs
Publication statusPublished - 05-03-2017

Fingerprint

Denaturation
biopolymer denaturation
ureas
Urea
proteins
Proteins
Lasers
lasers
Fluorescence
fluorescence
helices
trypsin
Trypsin
low concentrations
Astronomical Netherlands Satellite
disrupting
Pancreatic Ribonuclease
Laser excitation
lysozyme
indoles

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Atomic and Molecular Physics, and Optics
  • Instrumentation
  • Spectroscopy

Cite this

@article{a75c850b4dd54f99976bd4b121284205,
title = "Identification of protein secondary structures by laser induced autofluorescence: A study of urea and GnHCl induced protein denaturation",
abstract = "In the present study an attempt has been made to interrogate the bulk secondary structures of some selected proteins (BSA, HSA, lysozyme, trypsin and ribonuclease A) under urea and GnHCl denaturation using laser induced autofluorescence. The proteins were treated with different concentrations of urea (3 M, 6 M, 9 M) and GnHCl (2 M, 4 M, 6 M) and the corresponding steady state autofluorescence spectra were recorded at 281 nm pulsed laser excitations. The recorded fluorescence spectra of proteins were then interpreted based on the existing PDB structures of the proteins and the Trp solvent accessibility (calculated using “Scratch protein predictor” at 30{\%} threshold). Further, the influence of rigidity and conformation of the indole ring (caused by protein secondary structures) on the intrinsic fluorescence properties of proteins were also evaluated using fluorescence of ANS-HSA complexes, CD spectroscopy as well as with trypsin digestion experiments. The outcomes obtained clearly demonstrated GnHCl preferably disrupt helix as compared to the beta β-sheets whereas, urea found was more effective in disrupting β-sheets as compared to the helices. The other way round the proteins which have shown detectable change in the intrinsic fluorescence at lower concentrations of GnHCl were rich in helices whereas, the proteins which showed detectable change in the intrinsic fluorescence at lower concentrations of urea were rich in β-sheets. Since high salt concentrations like GnHCl and urea interfere in the secondary structure analysis by circular dichroism Spectrometry, the present method of analyzing secondary structures using laser induced autofluorescence will be highly advantageous over existing tools for the same.",
author = "Manjunath Siddaramaiah and Satyamoorthy Kapaettu and Rao, {Bola Sadashiva Satish} and Suparna Roy and Subhash Chandra and Mahato, {K. K.}",
year = "2017",
month = "3",
day = "5",
doi = "10.1016/j.saa.2016.11.017",
language = "English",
volume = "174",
pages = "44--53",
journal = "Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy",
issn = "1386-1425",
publisher = "Elsevier",

}

TY - JOUR

T1 - Identification of protein secondary structures by laser induced autofluorescence

T2 - A study of urea and GnHCl induced protein denaturation

AU - Siddaramaiah, Manjunath

AU - Kapaettu, Satyamoorthy

AU - Rao, Bola Sadashiva Satish

AU - Roy, Suparna

AU - Chandra, Subhash

AU - Mahato, K. K.

PY - 2017/3/5

Y1 - 2017/3/5

N2 - In the present study an attempt has been made to interrogate the bulk secondary structures of some selected proteins (BSA, HSA, lysozyme, trypsin and ribonuclease A) under urea and GnHCl denaturation using laser induced autofluorescence. The proteins were treated with different concentrations of urea (3 M, 6 M, 9 M) and GnHCl (2 M, 4 M, 6 M) and the corresponding steady state autofluorescence spectra were recorded at 281 nm pulsed laser excitations. The recorded fluorescence spectra of proteins were then interpreted based on the existing PDB structures of the proteins and the Trp solvent accessibility (calculated using “Scratch protein predictor” at 30% threshold). Further, the influence of rigidity and conformation of the indole ring (caused by protein secondary structures) on the intrinsic fluorescence properties of proteins were also evaluated using fluorescence of ANS-HSA complexes, CD spectroscopy as well as with trypsin digestion experiments. The outcomes obtained clearly demonstrated GnHCl preferably disrupt helix as compared to the beta β-sheets whereas, urea found was more effective in disrupting β-sheets as compared to the helices. The other way round the proteins which have shown detectable change in the intrinsic fluorescence at lower concentrations of GnHCl were rich in helices whereas, the proteins which showed detectable change in the intrinsic fluorescence at lower concentrations of urea were rich in β-sheets. Since high salt concentrations like GnHCl and urea interfere in the secondary structure analysis by circular dichroism Spectrometry, the present method of analyzing secondary structures using laser induced autofluorescence will be highly advantageous over existing tools for the same.

AB - In the present study an attempt has been made to interrogate the bulk secondary structures of some selected proteins (BSA, HSA, lysozyme, trypsin and ribonuclease A) under urea and GnHCl denaturation using laser induced autofluorescence. The proteins were treated with different concentrations of urea (3 M, 6 M, 9 M) and GnHCl (2 M, 4 M, 6 M) and the corresponding steady state autofluorescence spectra were recorded at 281 nm pulsed laser excitations. The recorded fluorescence spectra of proteins were then interpreted based on the existing PDB structures of the proteins and the Trp solvent accessibility (calculated using “Scratch protein predictor” at 30% threshold). Further, the influence of rigidity and conformation of the indole ring (caused by protein secondary structures) on the intrinsic fluorescence properties of proteins were also evaluated using fluorescence of ANS-HSA complexes, CD spectroscopy as well as with trypsin digestion experiments. The outcomes obtained clearly demonstrated GnHCl preferably disrupt helix as compared to the beta β-sheets whereas, urea found was more effective in disrupting β-sheets as compared to the helices. The other way round the proteins which have shown detectable change in the intrinsic fluorescence at lower concentrations of GnHCl were rich in helices whereas, the proteins which showed detectable change in the intrinsic fluorescence at lower concentrations of urea were rich in β-sheets. Since high salt concentrations like GnHCl and urea interfere in the secondary structure analysis by circular dichroism Spectrometry, the present method of analyzing secondary structures using laser induced autofluorescence will be highly advantageous over existing tools for the same.

UR - http://www.scopus.com/inward/record.url?scp=84996590410&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84996590410&partnerID=8YFLogxK

U2 - 10.1016/j.saa.2016.11.017

DO - 10.1016/j.saa.2016.11.017

M3 - Article

VL - 174

SP - 44

EP - 53

JO - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy

JF - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy

SN - 1386-1425

ER -