Intensification of thermo-hydraulic and exergetic performance by wire matrix and wavy tape: An experimental study

Research output: Contribution to journalArticlepeer-review

Abstract

The present study contemplates diverse flow range (1500 < Re < 15,000) to deduce the thermo-hydraulic and exergy performance of the twisted tape, wire matrix and wavy tape inserts (with three variants each) involving water as the heat transfer fluid in the 26.5 mm diameter tube. The testing of all the inserts under an identical operating condition (heat flux of 6 kW/m2) ensured realistic energy parameters viz. wall temperature, heat transfer coefficient, exergy destruction and second law efficiency. In comparison, wavy tape proved to be the most cost-effective and lucid design insert which can be incorporated in compact heat exchangers as the thermal advantage is highest as indicated by the performance evaluation criterion – I. Even the lowest exergy destruction complemented by highest second law efficiency made it perfect for the waste heat recovery process. Further, wire matrix being the convoluted design, gave maximum thermo-hydraulic rating (performance evaluation criterion – III) to suggest it in the tubular heat exchangers. Hence based on the thermal or thermo-hydraulic accountability, widely used twisted tape can be replaced by wavy tape or wire matrix. To explore its application further, Nu and f correlations have also been developed and validated.

Original languageEnglish
Article number105124
JournalInternational Communications in Heat and Mass Transfer
Volume121
DOIs
Publication statusPublished - 02-2021

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics
  • Chemical Engineering(all)
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Intensification of thermo-hydraulic and exergetic performance by wire matrix and wavy tape: An experimental study'. Together they form a unique fingerprint.

Cite this