Interval valued L-fuzzy cosets of nearrings and isomorphism theorems

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

In this paper, we study homomorphic images of interval valued L-fuzzy ideals of a nearring. If f: N1→ N2 is an onto nearring homomorphism and μ^ is an interval valued L-fuzzy ideal of N2 then we prove that f- 1(μ^) is an interval valued L-fuzzy ideal of N1. If μ^ is an interval valued L-fuzzy ideal of N1 then we show that f(μ^) is an interval valued L-fuzzy ideal of N2 whenever μ^ is invariant under f and interval valued t-norm is idempotent. Finally, we define interval valued L-fuzzy cosets and prove isomorphism theorems.

Original languageEnglish
Pages (from-to)393-408
Number of pages16
JournalAfrika Matematika
Volume27
Issue number3-4
DOIs
Publication statusPublished - 01-06-2016

Fingerprint

Isomorphism theorems
Near-ring
Coset
Fuzzy Ideal
Interval
T-norm
Homomorphic
Idempotent
Homomorphism
Invariant

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

@article{a649abac14824cada2f187bbec2e9924,
title = "Interval valued L-fuzzy cosets of nearrings and isomorphism theorems",
abstract = "In this paper, we study homomorphic images of interval valued L-fuzzy ideals of a nearring. If f: N1→ N2 is an onto nearring homomorphism and μ^ is an interval valued L-fuzzy ideal of N2 then we prove that f- 1(μ^) is an interval valued L-fuzzy ideal of N1. If μ^ is an interval valued L-fuzzy ideal of N1 then we show that f(μ^) is an interval valued L-fuzzy ideal of N2 whenever μ^ is invariant under f and interval valued t-norm is idempotent. Finally, we define interval valued L-fuzzy cosets and prove isomorphism theorems.",
author = "Kuncham, {Syam Prasad} and B. Jagadeesha and Kedukodi, {Babushri Srinivas}",
year = "2016",
month = "6",
day = "1",
doi = "10.1007/s13370-015-0348-1",
language = "English",
volume = "27",
pages = "393--408",
journal = "Afrika Matematika",
issn = "1012-9405",
publisher = "Springer Science + Business Media",
number = "3-4",

}

Interval valued L-fuzzy cosets of nearrings and isomorphism theorems. / Kuncham, Syam Prasad; Jagadeesha, B.; Kedukodi, Babushri Srinivas.

In: Afrika Matematika, Vol. 27, No. 3-4, 01.06.2016, p. 393-408.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Interval valued L-fuzzy cosets of nearrings and isomorphism theorems

AU - Kuncham, Syam Prasad

AU - Jagadeesha, B.

AU - Kedukodi, Babushri Srinivas

PY - 2016/6/1

Y1 - 2016/6/1

N2 - In this paper, we study homomorphic images of interval valued L-fuzzy ideals of a nearring. If f: N1→ N2 is an onto nearring homomorphism and μ^ is an interval valued L-fuzzy ideal of N2 then we prove that f- 1(μ^) is an interval valued L-fuzzy ideal of N1. If μ^ is an interval valued L-fuzzy ideal of N1 then we show that f(μ^) is an interval valued L-fuzzy ideal of N2 whenever μ^ is invariant under f and interval valued t-norm is idempotent. Finally, we define interval valued L-fuzzy cosets and prove isomorphism theorems.

AB - In this paper, we study homomorphic images of interval valued L-fuzzy ideals of a nearring. If f: N1→ N2 is an onto nearring homomorphism and μ^ is an interval valued L-fuzzy ideal of N2 then we prove that f- 1(μ^) is an interval valued L-fuzzy ideal of N1. If μ^ is an interval valued L-fuzzy ideal of N1 then we show that f(μ^) is an interval valued L-fuzzy ideal of N2 whenever μ^ is invariant under f and interval valued t-norm is idempotent. Finally, we define interval valued L-fuzzy cosets and prove isomorphism theorems.

UR - http://www.scopus.com/inward/record.url?scp=84971254431&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84971254431&partnerID=8YFLogxK

U2 - 10.1007/s13370-015-0348-1

DO - 10.1007/s13370-015-0348-1

M3 - Article

AN - SCOPUS:84971254431

VL - 27

SP - 393

EP - 408

JO - Afrika Matematika

JF - Afrika Matematika

SN - 1012-9405

IS - 3-4

ER -