Laser induced autofluorescence in the monitoring of β-mercaptoethanol mediated photo induced proton coupled electron transfer in proteins

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Photo induced proton coupled electron transfer (PCET) is an important process that many organisms use for progression of catalytic reactions leading to energy conversion. In the present study, the influence of SDS and BME on the redox properties of tyrosine and tryptophan for five different globular proteins, BSA, HSA, RNase-A, trypsin and lysozyme were studied using laser induced autofluorescence. The proteins were subjected to denaturation under SDS, SDS plus heat and SDS plus β-mercaptoethanol (BME) plus heat and the corresponding fluorescence were recorded. The influence of BME on the autofluorescence properties of the proteins were evaluated upon tris-2-corboxy-ethyl phosphine (TCEP) denaturation. The BSA and HSA when exposed to SDS alone, exhibited hydrophobic collapse around their tryptophan moieties. However, these proteins when treated with SDS plus BME plus heat, an unusual red shift in the emission was observed, may be due to proton transfer from hydroxyl group of the excited tyrosine residues to the local microenvironments. The observation was further confirmed with similar proton transfer in absence of tryptophan in RNase-A showing involvement of tyrosine in the process. A drastic quenching of fluorescence in all of the proteins under study were also observed, may be due to photo-induced electron transfer (PET) from BME to the intrinsic fluorophores resulting in radical ions formation, evaluated upon DCFDA measurements.

Original languageEnglish
Pages (from-to)607-614
Number of pages8
JournalSpectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy
Volume149
DOIs
Publication statusPublished - 05-10-2015

Fingerprint

Mercaptoethanol
Protons
electron transfer
tyrosine
tryptophan
proteins
Proteins
protons
Electrons
Lasers
Monitoring
Tryptophan
Tyrosine
Pancreatic Ribonuclease
phosphine
Denaturation
Proton transfer
biopolymer denaturation
lasers
heat

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Atomic and Molecular Physics, and Optics
  • Instrumentation
  • Spectroscopy

Cite this

@article{c1956fcf964a4e729025bb53c826953f,
title = "Laser induced autofluorescence in the monitoring of β-mercaptoethanol mediated photo induced proton coupled electron transfer in proteins",
abstract = "Photo induced proton coupled electron transfer (PCET) is an important process that many organisms use for progression of catalytic reactions leading to energy conversion. In the present study, the influence of SDS and BME on the redox properties of tyrosine and tryptophan for five different globular proteins, BSA, HSA, RNase-A, trypsin and lysozyme were studied using laser induced autofluorescence. The proteins were subjected to denaturation under SDS, SDS plus heat and SDS plus β-mercaptoethanol (BME) plus heat and the corresponding fluorescence were recorded. The influence of BME on the autofluorescence properties of the proteins were evaluated upon tris-2-corboxy-ethyl phosphine (TCEP) denaturation. The BSA and HSA when exposed to SDS alone, exhibited hydrophobic collapse around their tryptophan moieties. However, these proteins when treated with SDS plus BME plus heat, an unusual red shift in the emission was observed, may be due to proton transfer from hydroxyl group of the excited tyrosine residues to the local microenvironments. The observation was further confirmed with similar proton transfer in absence of tryptophan in RNase-A showing involvement of tyrosine in the process. A drastic quenching of fluorescence in all of the proteins under study were also observed, may be due to photo-induced electron transfer (PET) from BME to the intrinsic fluorophores resulting in radical ions formation, evaluated upon DCFDA measurements.",
author = "S. Manjunath and {Satish Rao}, {B. S.} and K. Satyamoorthy and Mahato, {K. K.}",
year = "2015",
month = "10",
day = "5",
doi = "10.1016/j.saa.2015.04.096",
language = "English",
volume = "149",
pages = "607--614",
journal = "Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy",
issn = "1386-1425",
publisher = "Elsevier",

}

TY - JOUR

T1 - Laser induced autofluorescence in the monitoring of β-mercaptoethanol mediated photo induced proton coupled electron transfer in proteins

AU - Manjunath, S.

AU - Satish Rao, B. S.

AU - Satyamoorthy, K.

AU - Mahato, K. K.

PY - 2015/10/5

Y1 - 2015/10/5

N2 - Photo induced proton coupled electron transfer (PCET) is an important process that many organisms use for progression of catalytic reactions leading to energy conversion. In the present study, the influence of SDS and BME on the redox properties of tyrosine and tryptophan for five different globular proteins, BSA, HSA, RNase-A, trypsin and lysozyme were studied using laser induced autofluorescence. The proteins were subjected to denaturation under SDS, SDS plus heat and SDS plus β-mercaptoethanol (BME) plus heat and the corresponding fluorescence were recorded. The influence of BME on the autofluorescence properties of the proteins were evaluated upon tris-2-corboxy-ethyl phosphine (TCEP) denaturation. The BSA and HSA when exposed to SDS alone, exhibited hydrophobic collapse around their tryptophan moieties. However, these proteins when treated with SDS plus BME plus heat, an unusual red shift in the emission was observed, may be due to proton transfer from hydroxyl group of the excited tyrosine residues to the local microenvironments. The observation was further confirmed with similar proton transfer in absence of tryptophan in RNase-A showing involvement of tyrosine in the process. A drastic quenching of fluorescence in all of the proteins under study were also observed, may be due to photo-induced electron transfer (PET) from BME to the intrinsic fluorophores resulting in radical ions formation, evaluated upon DCFDA measurements.

AB - Photo induced proton coupled electron transfer (PCET) is an important process that many organisms use for progression of catalytic reactions leading to energy conversion. In the present study, the influence of SDS and BME on the redox properties of tyrosine and tryptophan for five different globular proteins, BSA, HSA, RNase-A, trypsin and lysozyme were studied using laser induced autofluorescence. The proteins were subjected to denaturation under SDS, SDS plus heat and SDS plus β-mercaptoethanol (BME) plus heat and the corresponding fluorescence were recorded. The influence of BME on the autofluorescence properties of the proteins were evaluated upon tris-2-corboxy-ethyl phosphine (TCEP) denaturation. The BSA and HSA when exposed to SDS alone, exhibited hydrophobic collapse around their tryptophan moieties. However, these proteins when treated with SDS plus BME plus heat, an unusual red shift in the emission was observed, may be due to proton transfer from hydroxyl group of the excited tyrosine residues to the local microenvironments. The observation was further confirmed with similar proton transfer in absence of tryptophan in RNase-A showing involvement of tyrosine in the process. A drastic quenching of fluorescence in all of the proteins under study were also observed, may be due to photo-induced electron transfer (PET) from BME to the intrinsic fluorophores resulting in radical ions formation, evaluated upon DCFDA measurements.

UR - http://www.scopus.com/inward/record.url?scp=84929315604&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84929315604&partnerID=8YFLogxK

U2 - 10.1016/j.saa.2015.04.096

DO - 10.1016/j.saa.2015.04.096

M3 - Article

VL - 149

SP - 607

EP - 614

JO - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy

JF - Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy

SN - 1386-1425

ER -