Lineage reprogramming of human adipose mesenchymal stem cells to immune modulatory i-Heps

Sowmya Jahnavi, Vaishali Garg, Anoop Babu Vasandan, Swathi SundarRaj, Anujith Kumar, Jyothi Prasanna S

Research output: Contribution to journalArticlepeer-review


Pluripotent stem cell derived-hepatocytes depict fetal -hepatocyte characteristics/maturity and are immunogenic limiting their applications. Attempts have been made to derive hepatocytes from mesenchymal stem cells using developmental cocktails, epigenetic modulators and small molecules. However, achieving a stable terminally differentiated functional state had been a challenge. Inefficient hepatic differentiation could be due to lineage restrictions set during development. Hence a novel lineage reprogramming approach has been utilized to confer competence to adipose-mesenchymal stem cells (ADMSCs) to efficiently respond to hepatogenic cues and achieve a stable functional hepatic state. Lineage reprogramming involved co-transduction of ADMSCs with hepatic endoderm pioneer Transcription factor (TF)-FOXA2, HHEX-a homeobox gene and HNF4α-master TF indispensable for hepatic state maintenance. Lineage priming was evidenced by endogenous HFN4α promoter demethylation and robust responsiveness to minimal hepatic maturation cues. Induced hepatocytes (i-Heps) exhibited mesenchymal-to-epithelial transition and terminal hepatic signatures. Functional characterisation of i-Heps for hepatic drug detoxification systems, xenobiotic uptake/clearance, metabolic status and hepatotropic virus entry validated acquisition of stable hepatic state and junctional maturity Exhaustive analysis of MSC memory in i-Heps indicated loss of MSC-immunophenotype and terminal differentiation to osteogenic/adipogenic lineages. Importantly, i-Heps suppressed phytohemagglutinin-induced T-cell blasts, inhibited allogenic mixed-lymphocyte reactions (MLRs) and secreted immunomodulatory- indoleamine 2,3-dioxygenase in T-cell blast co-cultures akin to native ADMSCs. In a nutshell, the present study identifies a novel cocktail of TFs that reprogram ADMSCs to stable hepatic state. i-Heps exhibit adult hepatocyte functional maturity with robust immune-modulatory abilities rendering suitability for rigorous drug testing, hepatocyte-pathogen interaction studies and transplantation in allogenic settings.

Original languageEnglish
Article number106256
JournalInternational Journal of Biochemistry and Cell Biology
Publication statusPublished - 08-2022

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Cell Biology


Dive into the research topics of 'Lineage reprogramming of human adipose mesenchymal stem cells to immune modulatory i-Heps'. Together they form a unique fingerprint.

Cite this