Molecular modeling piloted analysis for semicarbazone derivative of curcumin as a potent Abl-kinase inhibitor targeting colon cancer

Fiona C. Rodrigues, Gangadhar Hari, K. S.R. Pai, Akhil Suresh, Usha Y. Nayak, N. V. Anilkumar, Goutam Thakur

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The human Abl kinases comprise a family of proteins that are known to be key stimulus drivers in the signaling pathways modulating cell growth, cell survival, cell adhesion, and apoptosis. Recent collative studies have indicated the role of activation of Abl and Abl-related genes in solid tumors; further terming the Abl kinases as molecular switches which promote proliferation, tumorigenesis, and metastasis. The up-regulated Abl-kinase expression in colorectal cancer (CRC) and the role of Abl tyrosine kinase activity in the Matrigel invasion of CRC cells have cemented its significance in CRC advancement. Therefore, the requisite of identifying small molecules which serve as Abl selective inhibitors and designing anti-Abl therapies, particularly for CRC tumors, has driven this study. Curcumin has been touted as an effective inhibitor of cancer cells; however, it is limited by its physicochemical inadequacies. Hence, we have studied the behavior of heterocyclic derivatives of curcumin via computational tools such as pharmacophore-based virtual screening, molecular docking, free-energy binding, and ADME profiling. The most actively docked molecule, 3,5-bis(4-hydroxy-3-methylstyryl)-1H-pyrazole-1-carboxamide, was comparatively evaluated against Curcumin via molecular dynamics simulation using Desmond, Schrödinger. The study exhibited the improved stability of the derivative as compared to Curcumin in the tested protein pocket and displayed the interaction bonds with the contacted key amino acids. To further establish the claim, the derivatives were synthesized via the mechanism of cyclization of Curcumin and screened in vitro using SRB assay against human CRC cell line, HCT 116. The active derivative indicated an IC50 value of 5.85 µM, which was sevenfold lower as compared to Curcumin’s IC50 of 35.40 µM. Hence, the results base the potential role of the curcumin derivative in modulating Abl-kinase activity and in turn may have potential therapeutic value as a lead for CRC therapy.

Original languageEnglish
Article number506
Journal3 Biotech
Volume11
Issue number12
DOIs
Publication statusPublished - 12-2021

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Environmental Science (miscellaneous)
  • Agricultural and Biological Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Molecular modeling piloted analysis for semicarbazone derivative of curcumin as a potent Abl-kinase inhibitor targeting colon cancer'. Together they form a unique fingerprint.

Cite this