N-acetyl cysteine supplement minimize tau expression and neuronal loss in animal model of alzheimer’s disease

Teresa Joy, Muddanna S. Rao, Sampath Madhyastha

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Alzheimer’s disease (AD) is characterized by the accumulation of neurofibrillary tangles (NFT), deposition of beta amyloid plaques, and consequent neuronal loss in the brain tissue. Oxidative stress to the neurons is often attributed to AD, but its link to NFT and β-amyloid protein (BAP) still remains unclear. In an animal model of AD, we boosted the oxidative defense by N-Acetyl cysteine (NAC), a precursor of glutathione, a powerful antioxidant and free radical scavenger, to understand the link between oxidative stress and NFT. In mimicking AD, intracerebroventricular (ICV) colchicine, a microtubule disrupting agent also known to cause oxidative stress was administered to the rats. The animal groups consisted of an age-matched control, sham operated, AD, and NAC treated in AD models of rats. Cognitive function was evaluated in a passive avoidance test; neuronal degeneration was quantified using Nissl staining. NFT in the form of abnormal tau expression in different regions of the brain were evaluated through immunohistochemistry using rabbit anti-tau antibody. ICV has resulted in significant cognitive and neuronal loss in medial prefrontal cortex (MFC) and all the regions of the hippocampus. It has also resulted in increased accumulation of intraneuronal tau in the hippocampus and MFC. NAC treatment in AD model rats has reversed the cognitive loss and neuronal degeneration. The intraneuronal tau expression also minimized with NAC treatment in AD model rats. Thus, our findings suggest that an antioxidant supplement during the progression of AD is likely to prevent neuronal degeneration by minimizing the neurofibrillary degeneration in the form of tau accumulation.

Original languageEnglish
Article number185
JournalBrain Sciences
Volume8
Issue number10
DOIs
Publication statusPublished - 11-10-2018

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Fingerprint Dive into the research topics of 'N-acetyl cysteine supplement minimize tau expression and neuronal loss in animal model of alzheimer’s disease'. Together they form a unique fingerprint.

Cite this