Abstract

Microorganisms thrive in well-organized biofilm ecosystems. Biofilm-associated cells typically show increased resistance to antibiotics and contribute significantly to treatment failure. This has prompted investigations aimed at developing advanced and novel antimicrobial approaches that could effectively overcome the shortcomings associated with conventional antibiotic therapy. Studies are ongoing to develop effective curative strategies ranging from the use of peptides, small molecules, nanoparticles to bacteriophages, sonic waves, and light energy targeting various structural and physiological aspects of biofilms. In photodynamic therapy, a light source of a specific wavelength is used to irradiate non-toxic photosensitizers such as tetrapyrroles, synthetic dyes or, naturally occurring compounds to generate reactive oxygen species that can exert a lethal effect on the microbe especially by disrupting the biofilm. The photosensitizer preferentially binds to and accumulates in the microbial cells without causing any damage to the host tissue. Currently, photodynamic therapy is increasingly being used for the treatment of oral caries and dental plaque, chronic wound infections, infected diabetic foot ulcers, cystic fibrosis, chronic sinusitis, implant device-associated infections, etc. This approach is recognized as safe, as it is non-toxic and minimally invasive, making it a reliable, realistic, and promising therapeutic strategy for reducing the microbial burden and biofilm formation in chronic infections. In this review article, we discuss the current and future potential strategies of utilizing photodynamic therapy to extend our ability to impede and eliminate biofilms in various medical conditions.

Original languageEnglish
Article number102090
JournalPhotodiagnosis and Photodynamic Therapy
DOIs
Publication statusAccepted/In press - 2020

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Oncology
  • Dermatology
  • Pharmacology (medical)

Fingerprint Dive into the research topics of 'Photodynamic therapy to control microbial biofilms'. Together they form a unique fingerprint.

Cite this