Physical, structural and optical properties of Sm3+ doped lithium zinc alumino borate glasses

Nimitha S. Prabhu, Vinod Hegde, Akshatha Wagh, M. I. Sayyed, O. Agar, Sudha D. Kamath

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Sm3+ doped lithium zinc alumino borate glasses with composition 15ZnF2–12Li2CO3–10BaO–8Al2O3–(55-x)B2O3–xSm2O3 where x = 0.1, 0.3, 0.5, 0.7 and 1.1 mol% were prepared by conventional melt quenching technique Their optical, physical, structural, mechanical and luminescence properties are investigated. UV–Vis-NIR absorption spectra showed all possible transitions of samarium ion in this glass matrix. Band gap values for all the glass samples were above 3 eV confirming the insulating nature for the glass. Densities, assessed using the Archimedes rule, were observed to be increasing with increasing samarium concentration. Increase in molar volume with addition of samarium content indicated that the extension of glass network is on account of the increase of number of Non-Bridging Oxygens created by network modifier samarium ions. Scanning Electron Microscopy (SEM) image showed a smooth surface for the synthezied glass. X-Ray Diffraction (XRD) technique was employed to verify the amorphous nature of the glasses. A Makishima and Mackenzie theoretical model gave acceptable approximation of elasticity constants viz. Young's modulus, shear modulus, bulk modulus and Poisson's ratio. The high Vickers hardness values evaluated with mechanical loads of 50, 100, 300, 500, 1000 g force, proved the stability of the glasses. Emission spectra showed a prominent transition 4G5/26H7/2 at 598 nm excited with 6H5/24P3/2 transition at 401 nm. Luminescence quenching effect was observed beyond 0.3 mol% Sm2O3 addition. The chromaticity coordinates (x, y) clustered in the orange-red region, making these Sm3+ doped lithium zinc alumino borate glasses suitable candidate for applications in LEDs and solid-state lasers.

Original languageEnglish
Pages (from-to)116-124
Number of pages9
JournalJournal of Non-Crystalline Solids
Volume515
DOIs
Publication statusPublished - 01-07-2019

Fingerprint

Borates
borates
Lithium
Zinc
Structural properties
Optical properties
Physical properties
lithium
zinc
physical properties
optical properties
Samarium
Glass
glass
samarium
Elastic moduli
Electron transitions
Luminescence
Quenching
quenching

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Condensed Matter Physics
  • Materials Chemistry

Cite this

Prabhu, Nimitha S. ; Hegde, Vinod ; Wagh, Akshatha ; Sayyed, M. I. ; Agar, O. ; Kamath, Sudha D. / Physical, structural and optical properties of Sm3+ doped lithium zinc alumino borate glasses. In: Journal of Non-Crystalline Solids. 2019 ; Vol. 515. pp. 116-124.
@article{59c6b4ee95ae4838a0a8640c951fb3cb,
title = "Physical, structural and optical properties of Sm3+ doped lithium zinc alumino borate glasses",
abstract = "Sm3+ doped lithium zinc alumino borate glasses with composition 15ZnF2–12Li2CO3–10BaO–8Al2O3–(55-x)B2O3–xSm2O3 where x = 0.1, 0.3, 0.5, 0.7 and 1.1 mol{\%} were prepared by conventional melt quenching technique Their optical, physical, structural, mechanical and luminescence properties are investigated. UV–Vis-NIR absorption spectra showed all possible transitions of samarium ion in this glass matrix. Band gap values for all the glass samples were above 3 eV confirming the insulating nature for the glass. Densities, assessed using the Archimedes rule, were observed to be increasing with increasing samarium concentration. Increase in molar volume with addition of samarium content indicated that the extension of glass network is on account of the increase of number of Non-Bridging Oxygens created by network modifier samarium ions. Scanning Electron Microscopy (SEM) image showed a smooth surface for the synthezied glass. X-Ray Diffraction (XRD) technique was employed to verify the amorphous nature of the glasses. A Makishima and Mackenzie theoretical model gave acceptable approximation of elasticity constants viz. Young's modulus, shear modulus, bulk modulus and Poisson's ratio. The high Vickers hardness values evaluated with mechanical loads of 50, 100, 300, 500, 1000 g force, proved the stability of the glasses. Emission spectra showed a prominent transition 4G5/2 → 6H7/2 at 598 nm excited with 6H5/2 → 4P3/2 transition at 401 nm. Luminescence quenching effect was observed beyond 0.3 mol{\%} Sm2O3 addition. The chromaticity coordinates (x, y) clustered in the orange-red region, making these Sm3+ doped lithium zinc alumino borate glasses suitable candidate for applications in LEDs and solid-state lasers.",
author = "Prabhu, {Nimitha S.} and Vinod Hegde and Akshatha Wagh and Sayyed, {M. I.} and O. Agar and Kamath, {Sudha D.}",
year = "2019",
month = "7",
day = "1",
doi = "10.1016/j.jnoncrysol.2019.04.015",
language = "English",
volume = "515",
pages = "116--124",
journal = "Journal of Non-Crystalline Solids",
issn = "0022-3093",
publisher = "Elsevier",

}

Physical, structural and optical properties of Sm3+ doped lithium zinc alumino borate glasses. / Prabhu, Nimitha S.; Hegde, Vinod; Wagh, Akshatha; Sayyed, M. I.; Agar, O.; Kamath, Sudha D.

In: Journal of Non-Crystalline Solids, Vol. 515, 01.07.2019, p. 116-124.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Physical, structural and optical properties of Sm3+ doped lithium zinc alumino borate glasses

AU - Prabhu, Nimitha S.

AU - Hegde, Vinod

AU - Wagh, Akshatha

AU - Sayyed, M. I.

AU - Agar, O.

AU - Kamath, Sudha D.

PY - 2019/7/1

Y1 - 2019/7/1

N2 - Sm3+ doped lithium zinc alumino borate glasses with composition 15ZnF2–12Li2CO3–10BaO–8Al2O3–(55-x)B2O3–xSm2O3 where x = 0.1, 0.3, 0.5, 0.7 and 1.1 mol% were prepared by conventional melt quenching technique Their optical, physical, structural, mechanical and luminescence properties are investigated. UV–Vis-NIR absorption spectra showed all possible transitions of samarium ion in this glass matrix. Band gap values for all the glass samples were above 3 eV confirming the insulating nature for the glass. Densities, assessed using the Archimedes rule, were observed to be increasing with increasing samarium concentration. Increase in molar volume with addition of samarium content indicated that the extension of glass network is on account of the increase of number of Non-Bridging Oxygens created by network modifier samarium ions. Scanning Electron Microscopy (SEM) image showed a smooth surface for the synthezied glass. X-Ray Diffraction (XRD) technique was employed to verify the amorphous nature of the glasses. A Makishima and Mackenzie theoretical model gave acceptable approximation of elasticity constants viz. Young's modulus, shear modulus, bulk modulus and Poisson's ratio. The high Vickers hardness values evaluated with mechanical loads of 50, 100, 300, 500, 1000 g force, proved the stability of the glasses. Emission spectra showed a prominent transition 4G5/2 → 6H7/2 at 598 nm excited with 6H5/2 → 4P3/2 transition at 401 nm. Luminescence quenching effect was observed beyond 0.3 mol% Sm2O3 addition. The chromaticity coordinates (x, y) clustered in the orange-red region, making these Sm3+ doped lithium zinc alumino borate glasses suitable candidate for applications in LEDs and solid-state lasers.

AB - Sm3+ doped lithium zinc alumino borate glasses with composition 15ZnF2–12Li2CO3–10BaO–8Al2O3–(55-x)B2O3–xSm2O3 where x = 0.1, 0.3, 0.5, 0.7 and 1.1 mol% were prepared by conventional melt quenching technique Their optical, physical, structural, mechanical and luminescence properties are investigated. UV–Vis-NIR absorption spectra showed all possible transitions of samarium ion in this glass matrix. Band gap values for all the glass samples were above 3 eV confirming the insulating nature for the glass. Densities, assessed using the Archimedes rule, were observed to be increasing with increasing samarium concentration. Increase in molar volume with addition of samarium content indicated that the extension of glass network is on account of the increase of number of Non-Bridging Oxygens created by network modifier samarium ions. Scanning Electron Microscopy (SEM) image showed a smooth surface for the synthezied glass. X-Ray Diffraction (XRD) technique was employed to verify the amorphous nature of the glasses. A Makishima and Mackenzie theoretical model gave acceptable approximation of elasticity constants viz. Young's modulus, shear modulus, bulk modulus and Poisson's ratio. The high Vickers hardness values evaluated with mechanical loads of 50, 100, 300, 500, 1000 g force, proved the stability of the glasses. Emission spectra showed a prominent transition 4G5/2 → 6H7/2 at 598 nm excited with 6H5/2 → 4P3/2 transition at 401 nm. Luminescence quenching effect was observed beyond 0.3 mol% Sm2O3 addition. The chromaticity coordinates (x, y) clustered in the orange-red region, making these Sm3+ doped lithium zinc alumino borate glasses suitable candidate for applications in LEDs and solid-state lasers.

UR - http://www.scopus.com/inward/record.url?scp=85064608642&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85064608642&partnerID=8YFLogxK

U2 - 10.1016/j.jnoncrysol.2019.04.015

DO - 10.1016/j.jnoncrysol.2019.04.015

M3 - Article

VL - 515

SP - 116

EP - 124

JO - Journal of Non-Crystalline Solids

JF - Journal of Non-Crystalline Solids

SN - 0022-3093

ER -