Poly(N-vinyl-2-pyrrolidone-maleic anhydride-styrene) grafted terpolymer: Synthesis, characterization, and bactericidal property evaluation against E. coli and S. epidermidis

M. P. Ajithkumar, M. P. Yashoda, S. Prasannakumar, T. V. Sruth, V. B. Sameer Kumar

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Poly(N-vinyl-2-pyrrolidone-maleic anhydride-styrene) terpolymer was prepared using AIBN initiator with acetone as solvent. The terpolymer was grafted with anti-bacterial agents para-aminobenzoic acid and 2,4-dichlorophenol to introduce bactericidal activity to the terpolymer. The terpolymer and the grafted polymers were characterized by FTIR, 1H-NMR, and 13C-NMR spectroscopic methods. Thermal properties were determined by differential scanning calorimetric technique and thermogravimetric analysis. The glass transition temperature was found to be 111°C (terpolymer), 150°C (VMS-G-PABA) and 130°C (VMS-G-DCP). Terpolymer starts degradation at 288°C and grafted terpolymers at 104°C (VMS-G-PABA) and 129°C (VMS-G-DCP), respectively. The anti-bacterial activity of grafted terpolymers were evaluated by the shake flask method against gram positive and gram negative bacteria E. coli and S. epidermidis. The grafted terpolymers showed effective inhibition against both the bacteria, the minimum inhibition concentration was observed to be 75 µg/mL and 80 µg/mL for VMS-G-PABA and 50 µg/mL for VMS-G-DCP against E. coli and S. epidermidis, respectively. The new polymers showed 90% bacterial growth inhibition at 200 µg/mL.

Original languageEnglish
Pages (from-to)480-488
Number of pages9
JournalJournal of Macromolecular Science, Part A: Pure and Applied Chemistry
Volume54
Issue number7
DOIs
Publication statusPublished - 03-07-2017

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Chemistry(all)
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Poly(N-vinyl-2-pyrrolidone-maleic anhydride-styrene) grafted terpolymer: Synthesis, characterization, and bactericidal property evaluation against E. coli and S. epidermidis'. Together they form a unique fingerprint.

  • Cite this