TY - JOUR
T1 - Population genetic variation of SLC6A4 gene, associated with neurophysiological development
AU - Hande, Shyamala H.
AU - Krishna, Swathy M.
AU - Sahote, Komalroop Kaur
AU - Dev, Nirosha
AU - Erl, Ting Pei
AU - Ramakrishna, Kovindraam
AU - Ravidhran, Renuka
AU - Das, Ranajit
PY - 2021
Y1 - 2021
N2 - The serotonin transporter 5-HTT is encoded by a single gene SLC6A4. Polymorphisms in SLC6A4 has been associated with a wide variety of neurological and psychiatric disorders including increased risk of posttraumatic stress disorder, higher likelihood for depression, obsessive-compulsive disorder (OCD), increased hostility and criminal behaviour. Genes associated with complex diseases often exhibit strong signatures of purifying selection compared to others. Further, discernible population specific variation in the signature of natural selection have been observed for several complex disease-related genes. In this project we aimed to investigate the population genetic variation of the serotonin transporter gene (SLC6A4), focussing on the single nucleotide polymorphisms (SNPs). To this end, we employed 2504 individuals around the globe available in 1000 Genome project Phase III data and classified them into five ethnic groups: Americans (AMR), Europeans (EUR), Africans (AFR), East Asians (EAS) and South Asians (SAS). Principal component analysis (PCA) performed on all annotated SNPs of SLC6A4 depicted clear clustering between Africans and the rest of the world along PC1, and East Asians and other non-African populations along PC2. Further, these SNPs were found to be under strong selection pressure especially among East Asian populations with significantly high positive cross-population extended haplotype homozygosity scores compared to Africans, indicating that SLC6A4 has likely undergone a strong selective sweep among the East Asians in the recent past. Our study can potentially explain the association between polymorphisms in SLC6A4, and major depression and suicidal tendencies among people of East Asian ancestry and the absence of such associations among people of European ancestry.
AB - The serotonin transporter 5-HTT is encoded by a single gene SLC6A4. Polymorphisms in SLC6A4 has been associated with a wide variety of neurological and psychiatric disorders including increased risk of posttraumatic stress disorder, higher likelihood for depression, obsessive-compulsive disorder (OCD), increased hostility and criminal behaviour. Genes associated with complex diseases often exhibit strong signatures of purifying selection compared to others. Further, discernible population specific variation in the signature of natural selection have been observed for several complex disease-related genes. In this project we aimed to investigate the population genetic variation of the serotonin transporter gene (SLC6A4), focussing on the single nucleotide polymorphisms (SNPs). To this end, we employed 2504 individuals around the globe available in 1000 Genome project Phase III data and classified them into five ethnic groups: Americans (AMR), Europeans (EUR), Africans (AFR), East Asians (EAS) and South Asians (SAS). Principal component analysis (PCA) performed on all annotated SNPs of SLC6A4 depicted clear clustering between Africans and the rest of the world along PC1, and East Asians and other non-African populations along PC2. Further, these SNPs were found to be under strong selection pressure especially among East Asian populations with significantly high positive cross-population extended haplotype homozygosity scores compared to Africans, indicating that SLC6A4 has likely undergone a strong selective sweep among the East Asians in the recent past. Our study can potentially explain the association between polymorphisms in SLC6A4, and major depression and suicidal tendencies among people of East Asian ancestry and the absence of such associations among people of European ancestry.
UR - http://www.scopus.com/inward/record.url?scp=85103477246&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103477246&partnerID=8YFLogxK
M3 - Article
C2 - 33764333
AN - SCOPUS:85103477246
SN - 0022-1333
VL - 100
JO - Journal of Genetics
JF - Journal of Genetics
ER -