Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds

G.B. Sukhorukov, D.V. Volodkin, A.M. Günther, A.I. Petrov, D.B. Shenoy, H. Möhwald

Research output: Contribution to journalArticle

309 Citations (Scopus)

Abstract

The paper describes the preparation and characterisation of porous calcium carbonate microparticles with an average size of 5 μm and their use for encapsulation of biomacromolecules. The average pore size of about 30-50 nm enables size selective and time-dependent permeation of different macromolecules. Layer-by-layer adsorption of polyelectrolytes into these particles followed by core dissolution leads to formation of interconnecting networks (matrix-like structure) made of polyelectrolyte complexes. The structure can be used for accumulation of bio-macromolecules, mainly proteins. Besides the inter-polyelectrolyte structure templated on porous CaCO3 microparticles the microgel particles ("ghost") can also be made inside by complexing alginate and calcium. The adsorption of biomacromolecules inside the porous calcium carbonate particles is presumably regulated by electrostatic interactions on the microparticle surface within pores and protein-protein interactions. Protein adsorption into CaCO3 microparticle voids together with layer-by-layer assembly of biopolymers provide a way for fabrication of completely biocompatible microcapsules envisaging their use as biomaterials.
Original languageEnglish
Pages (from-to)2073-2081
Number of pages9
JournalJournal of Materials Chemistry
Volume14
Issue number14
DOIs
Publication statusPublished - 2004

Fingerprint

Calcium Carbonate
Calcium carbonate
Polyelectrolytes
Encapsulation
Proteins
Macromolecules
Adsorption
Porins
Biopolymers
Biocompatible Materials
Coulomb interactions
Permeation
Pore size
Capsules
Alginate
Dissolution
Biomaterials
Fabrication
Calcium

Cite this

Sukhorukov, G. B., Volodkin, D. V., Günther, A. M., Petrov, A. I., Shenoy, D. B., & Möhwald, H. (2004). Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. Journal of Materials Chemistry, 14(14), 2073-2081. https://doi.org/10.1039/b402617a
Sukhorukov, G.B. ; Volodkin, D.V. ; Günther, A.M. ; Petrov, A.I. ; Shenoy, D.B. ; Möhwald, H. / Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. In: Journal of Materials Chemistry. 2004 ; Vol. 14, No. 14. pp. 2073-2081.
@article{b757c8a5b4f64fb189ac4d58ee90d3d7,
title = "Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds",
abstract = "The paper describes the preparation and characterisation of porous calcium carbonate microparticles with an average size of 5 μm and their use for encapsulation of biomacromolecules. The average pore size of about 30-50 nm enables size selective and time-dependent permeation of different macromolecules. Layer-by-layer adsorption of polyelectrolytes into these particles followed by core dissolution leads to formation of interconnecting networks (matrix-like structure) made of polyelectrolyte complexes. The structure can be used for accumulation of bio-macromolecules, mainly proteins. Besides the inter-polyelectrolyte structure templated on porous CaCO3 microparticles the microgel particles ({"}ghost{"}) can also be made inside by complexing alginate and calcium. The adsorption of biomacromolecules inside the porous calcium carbonate particles is presumably regulated by electrostatic interactions on the microparticle surface within pores and protein-protein interactions. Protein adsorption into CaCO3 microparticle voids together with layer-by-layer assembly of biopolymers provide a way for fabrication of completely biocompatible microcapsules envisaging their use as biomaterials.",
author = "G.B. Sukhorukov and D.V. Volodkin and A.M. G{\"u}nther and A.I. Petrov and D.B. Shenoy and H. M{\"o}hwald",
note = "Cited By :251 Export Date: 10 November 2017 CODEN: JMACE Correspondence Address: Sukhorukov, G.B.; Max-Planck Inst. Colloids Interfaces, Potsdam/Golm 14424, Germany Chemicals/CAS: alginic acid, 28961-37-7, 29894-36-8, 9005-32-7, 9005-38-3; calcium, 14092-94-5, 7440-70-2; calcium carbonate, 13397-26-7, 13701-58-1, 14791-73-2, 471-34-1; protein, 67254-75-5 References: Thies, C., A short history of microencapsulation technology (1999) Microspheres, Microcapsules and Liposomes, Vol. I: Preparation and Chemical Application, 47. , ed. R. Arshady, Citus books, London; Decher, G., Hong, J.D., (1991) Macromol. Chem., Macromol. Symp., 46, p. 321; Sukhorukov, G.B., Donath, E., Davis, S., Lichtenfeld, H., Caruso, F., Popov, V.I., Mohwald, H., (1998) Polym. Adv. Technol., 9, p. 759; Antipov, A.A., Sukhorukov, G.B., Donath, E., M{\"o}hwald, H., (2001) J. Phys. Chem. B, 105 (12), p. 2281; Ai, H., Jones, S., Villiers, M.M., Lvov, Y.M., (2003) J. Controlled Release, 86, p. 59; Trubetskoy, V.S., Loomis, A., Hagstrom, J.E., Budker, V.G., Wolff, J.A., (1999) Nucleic Acids Res., 27, p. 3090; Volodkin, D.V., Balabushevitch, N.G., Sukhorukov, G.B., Larionova, N.I., (2003) STP Pharm. Sci., 13 (3), p. 163; Sukhorukov, G.B., (2001) Studies in Interface Science, p. 383. , ed. D. M{\"o}bius and R. Miller, Elsevier, Amsterdam; Gao, C.Y., Moya, S., Lichtenfeld, H., Casoli, A., Fiedler, H., Donath, E., Mohwald, H., (2001) Macromol. Mater. Eng., 286 (6), p. 355; Shenoy, D.B., Antipov, A.A., Sukhorukov, G.B., Mohwald, H., (2003) Biomacromolecules, 4 (2), pp. 265-272; Antipov, A.A., Shchukin, D., Fedutik, Y., Petrov, A.I., Sukhorukov, G.B., Mohwald, H., (2003) Colloids Surf. A - Physicochem. Eng. Aspects, 224, p. 175; Moya, S., D{\"a}hne, L., Voigt, A., Leporatti, S., Donath, E., M{\"o}hwald, H., (2001) Colloids Surf. A - Physicochem. Eng. Aspects, 183, p. 27; Radchenko, I.L., Sukhorukov, G.B., M{\"o}hwald, H., (2000) Colloids Surf. A, 202, p. 127; D{\"a}hne, L., Leporatti, S., Donath, E., M{\"o}hwald, H., (2001) J. Am. Chem. Soc., 123, p. 5431; Lvov, Y., Antipov, A.A., Mamedov, A., M{\"o}hwald, H., Sukhorukov, G.B., (2001) Nanolett., 1 (3), p. 125; Antipov, A., Sukhorukov, G.B., Donath, E., Mohwald, H., (2001) J. Phys. Chem. B, 105 (12), p. 2281; Tracy, L.S., Francois, C.J.P., Jennings, H.M., (1998) J. Cryst. Growth, 193, p. 374; Koga, N., Nakagoe, Y., Tanaka, H., (1998) Thermochim. Acta, 318, p. 239; Horn, D., Rieger, J., (2001) Angew. Chem., Int. Ed., 40, p. 4330; Ogitio, T., Suzuki, T., Sawad, K., (1987) Geochim. Cosmochim. Acta, 51, p. 2757; Spanos, N., Koutsoukos, P.G., (1998) J. Cryst. Growth, 191, p. 783; Kitamura, M., (2001) J. Colloid Interface Sci., 236, p. 318; Kitamura, M., Konno, H., Yasui, A., Masuoka, H., (2002) J. Cryst. Growth, 236, p. 323; Kato, T., Susuki, T., Amamiya, T., Irie, T., Komiyama, M., Yui, H., (1998) Supramol. Sci., 5, p. 411; Manoli, F., Dalas, E., (2000) J. Cryst. Growth, 218, p. 359; C{\"o}lfen, H., Qi, L., (2001) Chem. Eur. J., 7, p. 106; Volodkin, D.V., Petrov, A.I., Prevot, M., Sukhorukov, G.B., (2004) Langmuir, 20 (8), p. 3398; Volodkin, D.V., Sukhorukov, G.B., (2004) Biomacromolecules, , accepted; Galisteo, F., Norde, W., (1995) Colloids Surf. B: Biointerfaces, 4, p. 375; Haynes, C.A., Norde, W., (1994) Colloids Surf. B: Biointerfaces, 2, p. 517; Norde, W., Macritchie, F., Nowicka, G., Lyklema, J., (1986) J. Colloid Interface Sci., 112, p. 447; Donath, E., Sukhorukov, G.B., Caruso, F., Davis, S.A., M{\"o}hwald, H., (1998) Angew. Chem., Int. Ed., 37 (16), p. 2202; Gao, C.Y., Donath, E., M{\"o}hwald, H., Shen, J., (2002) Angew. Chem., Int. Ed., 41 (20), p. 3789; Balabushevich, N.G., Tiourina, O.P., Volodkin, D.V., Larionova, N.I., Sukhorukov, G.B., (2003) Biomacromolecules, 4 (5), p. 1191; Dudnik, V., Sukhorukov, G.B., Radtchenko, I.L., M{\"o}hwald, H., (2001) Macromolecules, 34 (7), p. 2329; Volodkin, D.V., Petrov, A.I., Larionova, N.I., Sukhorukov, G.B., (2003) COST 840 & XI International BRG Workshop on Bioencapsulation. State of Art of Bio Encapsulation Science and Technology, , Strasbourg (Illkirch), France, 25-27 May",
year = "2004",
doi = "10.1039/b402617a",
language = "English",
volume = "14",
pages = "2073--2081",
journal = "Journal of Materials Chemistry",
issn = "0959-9428",
publisher = "Royal Society of Chemistry",
number = "14",

}

Sukhorukov, GB, Volodkin, DV, Günther, AM, Petrov, AI, Shenoy, DB & Möhwald, H 2004, 'Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds', Journal of Materials Chemistry, vol. 14, no. 14, pp. 2073-2081. https://doi.org/10.1039/b402617a

Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. / Sukhorukov, G.B.; Volodkin, D.V.; Günther, A.M.; Petrov, A.I.; Shenoy, D.B.; Möhwald, H.

In: Journal of Materials Chemistry, Vol. 14, No. 14, 2004, p. 2073-2081.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds

AU - Sukhorukov, G.B.

AU - Volodkin, D.V.

AU - Günther, A.M.

AU - Petrov, A.I.

AU - Shenoy, D.B.

AU - Möhwald, H.

N1 - Cited By :251 Export Date: 10 November 2017 CODEN: JMACE Correspondence Address: Sukhorukov, G.B.; Max-Planck Inst. Colloids Interfaces, Potsdam/Golm 14424, Germany Chemicals/CAS: alginic acid, 28961-37-7, 29894-36-8, 9005-32-7, 9005-38-3; calcium, 14092-94-5, 7440-70-2; calcium carbonate, 13397-26-7, 13701-58-1, 14791-73-2, 471-34-1; protein, 67254-75-5 References: Thies, C., A short history of microencapsulation technology (1999) Microspheres, Microcapsules and Liposomes, Vol. I: Preparation and Chemical Application, 47. , ed. R. Arshady, Citus books, London; Decher, G., Hong, J.D., (1991) Macromol. Chem., Macromol. Symp., 46, p. 321; Sukhorukov, G.B., Donath, E., Davis, S., Lichtenfeld, H., Caruso, F., Popov, V.I., Mohwald, H., (1998) Polym. Adv. Technol., 9, p. 759; Antipov, A.A., Sukhorukov, G.B., Donath, E., Möhwald, H., (2001) J. Phys. Chem. B, 105 (12), p. 2281; Ai, H., Jones, S., Villiers, M.M., Lvov, Y.M., (2003) J. Controlled Release, 86, p. 59; Trubetskoy, V.S., Loomis, A., Hagstrom, J.E., Budker, V.G., Wolff, J.A., (1999) Nucleic Acids Res., 27, p. 3090; Volodkin, D.V., Balabushevitch, N.G., Sukhorukov, G.B., Larionova, N.I., (2003) STP Pharm. Sci., 13 (3), p. 163; Sukhorukov, G.B., (2001) Studies in Interface Science, p. 383. , ed. D. Möbius and R. Miller, Elsevier, Amsterdam; Gao, C.Y., Moya, S., Lichtenfeld, H., Casoli, A., Fiedler, H., Donath, E., Mohwald, H., (2001) Macromol. Mater. Eng., 286 (6), p. 355; Shenoy, D.B., Antipov, A.A., Sukhorukov, G.B., Mohwald, H., (2003) Biomacromolecules, 4 (2), pp. 265-272; Antipov, A.A., Shchukin, D., Fedutik, Y., Petrov, A.I., Sukhorukov, G.B., Mohwald, H., (2003) Colloids Surf. A - Physicochem. Eng. Aspects, 224, p. 175; Moya, S., Dähne, L., Voigt, A., Leporatti, S., Donath, E., Möhwald, H., (2001) Colloids Surf. A - Physicochem. Eng. Aspects, 183, p. 27; Radchenko, I.L., Sukhorukov, G.B., Möhwald, H., (2000) Colloids Surf. A, 202, p. 127; Dähne, L., Leporatti, S., Donath, E., Möhwald, H., (2001) J. Am. Chem. Soc., 123, p. 5431; Lvov, Y., Antipov, A.A., Mamedov, A., Möhwald, H., Sukhorukov, G.B., (2001) Nanolett., 1 (3), p. 125; Antipov, A., Sukhorukov, G.B., Donath, E., Mohwald, H., (2001) J. Phys. Chem. B, 105 (12), p. 2281; Tracy, L.S., Francois, C.J.P., Jennings, H.M., (1998) J. Cryst. Growth, 193, p. 374; Koga, N., Nakagoe, Y., Tanaka, H., (1998) Thermochim. Acta, 318, p. 239; Horn, D., Rieger, J., (2001) Angew. Chem., Int. Ed., 40, p. 4330; Ogitio, T., Suzuki, T., Sawad, K., (1987) Geochim. Cosmochim. Acta, 51, p. 2757; Spanos, N., Koutsoukos, P.G., (1998) J. Cryst. Growth, 191, p. 783; Kitamura, M., (2001) J. Colloid Interface Sci., 236, p. 318; Kitamura, M., Konno, H., Yasui, A., Masuoka, H., (2002) J. Cryst. Growth, 236, p. 323; Kato, T., Susuki, T., Amamiya, T., Irie, T., Komiyama, M., Yui, H., (1998) Supramol. Sci., 5, p. 411; Manoli, F., Dalas, E., (2000) J. Cryst. Growth, 218, p. 359; Cölfen, H., Qi, L., (2001) Chem. Eur. J., 7, p. 106; Volodkin, D.V., Petrov, A.I., Prevot, M., Sukhorukov, G.B., (2004) Langmuir, 20 (8), p. 3398; Volodkin, D.V., Sukhorukov, G.B., (2004) Biomacromolecules, , accepted; Galisteo, F., Norde, W., (1995) Colloids Surf. B: Biointerfaces, 4, p. 375; Haynes, C.A., Norde, W., (1994) Colloids Surf. B: Biointerfaces, 2, p. 517; Norde, W., Macritchie, F., Nowicka, G., Lyklema, J., (1986) J. Colloid Interface Sci., 112, p. 447; Donath, E., Sukhorukov, G.B., Caruso, F., Davis, S.A., Möhwald, H., (1998) Angew. Chem., Int. Ed., 37 (16), p. 2202; Gao, C.Y., Donath, E., Möhwald, H., Shen, J., (2002) Angew. Chem., Int. Ed., 41 (20), p. 3789; Balabushevich, N.G., Tiourina, O.P., Volodkin, D.V., Larionova, N.I., Sukhorukov, G.B., (2003) Biomacromolecules, 4 (5), p. 1191; Dudnik, V., Sukhorukov, G.B., Radtchenko, I.L., Möhwald, H., (2001) Macromolecules, 34 (7), p. 2329; Volodkin, D.V., Petrov, A.I., Larionova, N.I., Sukhorukov, G.B., (2003) COST 840 & XI International BRG Workshop on Bioencapsulation. State of Art of Bio Encapsulation Science and Technology, , Strasbourg (Illkirch), France, 25-27 May

PY - 2004

Y1 - 2004

N2 - The paper describes the preparation and characterisation of porous calcium carbonate microparticles with an average size of 5 μm and their use for encapsulation of biomacromolecules. The average pore size of about 30-50 nm enables size selective and time-dependent permeation of different macromolecules. Layer-by-layer adsorption of polyelectrolytes into these particles followed by core dissolution leads to formation of interconnecting networks (matrix-like structure) made of polyelectrolyte complexes. The structure can be used for accumulation of bio-macromolecules, mainly proteins. Besides the inter-polyelectrolyte structure templated on porous CaCO3 microparticles the microgel particles ("ghost") can also be made inside by complexing alginate and calcium. The adsorption of biomacromolecules inside the porous calcium carbonate particles is presumably regulated by electrostatic interactions on the microparticle surface within pores and protein-protein interactions. Protein adsorption into CaCO3 microparticle voids together with layer-by-layer assembly of biopolymers provide a way for fabrication of completely biocompatible microcapsules envisaging their use as biomaterials.

AB - The paper describes the preparation and characterisation of porous calcium carbonate microparticles with an average size of 5 μm and their use for encapsulation of biomacromolecules. The average pore size of about 30-50 nm enables size selective and time-dependent permeation of different macromolecules. Layer-by-layer adsorption of polyelectrolytes into these particles followed by core dissolution leads to formation of interconnecting networks (matrix-like structure) made of polyelectrolyte complexes. The structure can be used for accumulation of bio-macromolecules, mainly proteins. Besides the inter-polyelectrolyte structure templated on porous CaCO3 microparticles the microgel particles ("ghost") can also be made inside by complexing alginate and calcium. The adsorption of biomacromolecules inside the porous calcium carbonate particles is presumably regulated by electrostatic interactions on the microparticle surface within pores and protein-protein interactions. Protein adsorption into CaCO3 microparticle voids together with layer-by-layer assembly of biopolymers provide a way for fabrication of completely biocompatible microcapsules envisaging their use as biomaterials.

U2 - 10.1039/b402617a

DO - 10.1039/b402617a

M3 - Article

VL - 14

SP - 2073

EP - 2081

JO - Journal of Materials Chemistry

JF - Journal of Materials Chemistry

SN - 0959-9428

IS - 14

ER -