Production of Gallic Acid from Swietenia macrophylla Using Tannase from Bacillus Gottheilii M2S2 in Semi-Solid State Fermentation

Research output: Contribution to journalArticlepeer-review

Abstract

In this research, an industrially important enzyme tannase and product gallic acid was produced with an inexpensive novel substrate Swietenia macrophylla. Fermentation of S. macrophylla was optimized using a two-step approach: First, the traditional One variable at-a-time technique, and second, the statistical Box-Behnken design for co-production of tannase enzyme and gallic acid. This two-step method of optimization showed the highest tannase activity and gallic acid yield of 0.0497 U/mL and 225 µg/mL respectively which is a 29.5 and 49-fold increase when compared to unoptimized conditions. Further, the partially purified tannase enzyme was characterized and showed optimal tannase activity at pH 4.0 and 30 ℃, and was stable between pH 3.0–6.0 and 4−40 ℃ for 24 h and 10 h, respectively. Also, metal ions such as Ca2+, Na+, and K+ at 1 mM concentration; and organic solvents methanol, and isoamyl alcohol at 20% v/v exhibited the highest activity at optimized reaction conditions. Whereas, Mn2+, Zn2+, Mg2+, Fe2+ and Fe3+, EDTA, TritonX 100, toluene, and hexane caused the tannase inhibition at higher concentrations. In the end, the fermentative production of gallic acid was verified qualitatively through thin-layer chromatography and Fourier transform infrared spectroscopy. Graphical Abstract: [Figure not available: see fulltext.]

Original languageEnglish
JournalWaste and Biomass Valorization
DOIs
Publication statusAccepted/In press - 2023

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Renewable Energy, Sustainability and the Environment
  • Waste Management and Disposal

Fingerprint

Dive into the research topics of 'Production of Gallic Acid from Swietenia macrophylla Using Tannase from Bacillus Gottheilii M2S2 in Semi-Solid State Fermentation'. Together they form a unique fingerprint.

Cite this