Raised calcium promotes α-synuclein aggregate formation

S. Nath, J. Goodwin, Y. Engelborghs, D. L. Pountney

Research output: Contribution to journalArticlepeer-review

100 Citations (Scopus)

Abstract

Parkinson's and Parkinson's-plus diseases are associated with abnormal, aggregated forms of the protein, α-synuclein. We have investigated the effects of calcium on α-synuclein aggregation in vitro and in vivo. We treated monomeric α-synuclein with calcium in vitro and used fluorescence imaging, fluorescence correlation and scanning electron microscopy to investigate protein aggregation. Incubation of fluorescent-labelled monomeric α-synuclein (24h) at low concentration (10μM) with calcium resulted in surface aggregates (1.5±0.7μm2) detected by fluorescence microscopy saturating at a half-maximum calcium concentration of 80μM, whilst incubations without calcium showed few protein aggregates. Scanning electron microscopy revealed that α-synuclein surface plaques (0.5-1μm) form in the presence of calcium and comprise 10-20nm globular particles. Incubation of α-synuclein at high concentration (75μM; 6h) resulted in soluble oligomeric aggregates detected by fluorescence correlation spectroscopy in a calcium dependent process, saturating at a half maximum calcium concentration of 180μM. In cell culture experiments, we used thapsigargin or calcium ionophore A23187 to induce transient increases of intracellular free calcium in human 1321N1 cells expressing an α-synuclein-GFP construct and observed calcium flux and α-synuclein aggregation by fluorescence microscopy. The cell culture data shows that a transient increase in intracellular free calcium significantly increased the proportion of cells bearing cytoplasmic α-synuclein aggregates 6 and 12h post-treatment (P, 0.01). Our data indicates that calcium accelerates α-synuclein aggregation on surfaces, in free solution and in cultured cells and suggests that surface adsorption may play an important role in the calcium-dependent aggregation mechanism.

Original languageEnglish
Pages (from-to)516-526
Number of pages11
JournalMolecular and Cellular Neuroscience
Volume46
Issue number2
DOIs
Publication statusPublished - 02-2011

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Cellular and Molecular Neuroscience
  • Cell Biology

Fingerprint

Dive into the research topics of 'Raised calcium promotes α-synuclein aggregate formation'. Together they form a unique fingerprint.

Cite this