TY - JOUR
T1 - Regulation of contractile signaling and matrix remodeling by T-cadherin in vascular smooth muscle cells
T2 - Constitutive and insulin-dependent effects
AU - Frismantiene, Agne
AU - Pfaff, Dennis
AU - Frachet, Audrey
AU - Coen, Matteo
AU - Joshi, Manjunath B.
AU - Maslova, Kseniya
AU - Bochaton-Piallat, Marie Luce
AU - Erne, Paul
AU - Resink, Therese J.
AU - Philippova, Maria
PY - 2014
Y1 - 2014
N2 - Expression of GPI-anchored T-cadherin (T-cad) on vascular smooth muscle cells (VSMC) is elevated in vascular disorders such as atherosclerosis and restenosis which are associated with insulin resistance. Functions for T-cad and signal transduction pathway utilization by T-cad in VSMC are unknown. The present study examines the consequences of altered T-cad expression on VSMC for constitutive and insulin-induced Akt/mTOR axis signaling and contractile competence. Using viral vectors rat (WKY and SHR) and human aortic VSMCs were variously transduced with respect to T-cad-overexpression (Tcad+-VSMC) or T-cad-deficiency (shT-VSMC) and compared with their respective control transductants (E-VSMC or shC-VSMC). Tcad+-VSMC exhibited elevated constitutive levels of phosphorylated Aktser473, GSK3βser9, S6RPser235/236 and IRS-1ser636/639. Total IRS-1 levels were reduced. Contractile machinery was constitutively altered in a manner indicative of reduced intrinsic contractile competence, namely decreased phosphorylation of MYPT1thr696 or thr853 and MLC20 thr18/ser19, reduced RhoA activity and increased iNOS expression. Tcad+-VSMC-populated collagen lattices exhibited greater compaction which was due to increased collagen fibril packing/reorganization. T-cad+-VSMC exhibited a state of insulin insensitivity as evidenced by attenuation of the ability of insulin to stimulate Akt/mTOR axis signaling, phosphorylation of MLC20 and MYPT1, compaction of free-floating lattices and collagen fibril reorganization in unreleased lattices. The effects of T-cad-deficiency on constitutive characteristics and insulin responsiveness of VSMC were opposite to those of T-cad-overexpression. The study reveals novel cadherin-based modalities to modulate VSMC sensitivity to insulin through Akt/mTOR axis signaling as well as vascular function and tissue architecture through the effects on contractile competence and organization of extracellular matrix. •Signaling pathway utilization and functions for T-cad in VSMC were identified.
AB - Expression of GPI-anchored T-cadherin (T-cad) on vascular smooth muscle cells (VSMC) is elevated in vascular disorders such as atherosclerosis and restenosis which are associated with insulin resistance. Functions for T-cad and signal transduction pathway utilization by T-cad in VSMC are unknown. The present study examines the consequences of altered T-cad expression on VSMC for constitutive and insulin-induced Akt/mTOR axis signaling and contractile competence. Using viral vectors rat (WKY and SHR) and human aortic VSMCs were variously transduced with respect to T-cad-overexpression (Tcad+-VSMC) or T-cad-deficiency (shT-VSMC) and compared with their respective control transductants (E-VSMC or shC-VSMC). Tcad+-VSMC exhibited elevated constitutive levels of phosphorylated Aktser473, GSK3βser9, S6RPser235/236 and IRS-1ser636/639. Total IRS-1 levels were reduced. Contractile machinery was constitutively altered in a manner indicative of reduced intrinsic contractile competence, namely decreased phosphorylation of MYPT1thr696 or thr853 and MLC20 thr18/ser19, reduced RhoA activity and increased iNOS expression. Tcad+-VSMC-populated collagen lattices exhibited greater compaction which was due to increased collagen fibril packing/reorganization. T-cad+-VSMC exhibited a state of insulin insensitivity as evidenced by attenuation of the ability of insulin to stimulate Akt/mTOR axis signaling, phosphorylation of MLC20 and MYPT1, compaction of free-floating lattices and collagen fibril reorganization in unreleased lattices. The effects of T-cad-deficiency on constitutive characteristics and insulin responsiveness of VSMC were opposite to those of T-cad-overexpression. The study reveals novel cadherin-based modalities to modulate VSMC sensitivity to insulin through Akt/mTOR axis signaling as well as vascular function and tissue architecture through the effects on contractile competence and organization of extracellular matrix. •Signaling pathway utilization and functions for T-cad in VSMC were identified.
UR - http://www.scopus.com/inward/record.url?scp=84901841772&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84901841772&partnerID=8YFLogxK
U2 - 10.1016/j.cellsig.2014.05.001
DO - 10.1016/j.cellsig.2014.05.001
M3 - Article
C2 - 24815187
AN - SCOPUS:84901841772
SN - 0898-6568
VL - 26
SP - 1897
EP - 1908
JO - Cellular Signalling
JF - Cellular Signalling
IS - 9
ER -