Role of diffusion tensor imaging in renal parenchymal changes

Shimona Saini, Vikas Kumar, Prakashini Koteshwara

Research output: Contribution to journalArticle

Abstract

Context: Diffusion Tensor Imaging (DTI) is a reliable noninvasive tool to assess renal function with medullary Fractional Anisotropy (FA) values showing the most consistent results. Aims: Evaluation of FA, Apparent Diffusion Coefficient (ADC) for detecting diabetic nephropathy (DN) using 1.5-Tesla magnetic resonance imaging (MRI). To determine FA and ADC values in chronic kidney disease (CKD) patients and controls, and comparing these with estimated glomerular filtiration rate (eGFR) and categorizing the stage of CKD. Patients and Methods: Thirty nondiabetic volunteers underwent DTI.The study included 83 diabetics, 30 frank urine proteinuric, 30 micro-albuminuric, 23 normo-albuminuric with only raised blood sugar patients.Patients were stratified by eGFR into groups: eGFR <60 and eGFR>60ml/min. ADC and FA values in cortex and medulla were compared between controls and study groups. Statistical Analysis Used: Analysis of variance and Pearson correlation using SPSS 16 were performed. Results: There was significant difference of FA medulla in controls versus albuminuric and micro-albuminuric versus frank proteinuric patients (P < 0.001).Also, there was significant difference between cortical ADC values between normal, microalbuminuric/proteinuric groups (P = 0.010, P =0.000, respectively). Significant difference between medullary FA values of patients with eGFR >60 and eGFR < 60 versus normal controls (P < 0.001) was noted.With declining renal function from normal to CKD category 5, a negative correlation between medullary FA (r= -0.785, P = 0.001) and ADC cortex values (r= -0.436, P = 0.001) was noted. A strong positive correlation between medullary FA and cortex ADC with eGFR (r = 0.598 and 0.344, respectively) was noted. Conclusion: Medullary FA of diabetics with relatively intact kidney function were significantly lower than those of controls. Hence, drop in medullary FA values can be an indicator of early nephropathy/patients at risk where eGFR is in near normal range. Cortical ADC and medullary FA demonstrated a significant correlation with eGFR with the latter showing a stronger positive correlation.

Original languageEnglish
Pages (from-to)175-181
Number of pages7
JournalIndian Journal of Radiology and Imaging
Volume28
Issue number2
DOIs
Publication statusPublished - 01-04-2018

Fingerprint

Diffusion Tensor Imaging
Anisotropy
Kidney
Chronic Renal Insufficiency
Diabetic Nephropathies
Blood Glucose
Volunteers
Analysis of Variance
Reference Values
Magnetic Resonance Imaging
Urine
Control Groups

All Science Journal Classification (ASJC) codes

  • Radiology Nuclear Medicine and imaging

Cite this

@article{8cbc7d575bf7415b9451006eb950d1f3,
title = "Role of diffusion tensor imaging in renal parenchymal changes",
abstract = "Context: Diffusion Tensor Imaging (DTI) is a reliable noninvasive tool to assess renal function with medullary Fractional Anisotropy (FA) values showing the most consistent results. Aims: Evaluation of FA, Apparent Diffusion Coefficient (ADC) for detecting diabetic nephropathy (DN) using 1.5-Tesla magnetic resonance imaging (MRI). To determine FA and ADC values in chronic kidney disease (CKD) patients and controls, and comparing these with estimated glomerular filtiration rate (eGFR) and categorizing the stage of CKD. Patients and Methods: Thirty nondiabetic volunteers underwent DTI.The study included 83 diabetics, 30 frank urine proteinuric, 30 micro-albuminuric, 23 normo-albuminuric with only raised blood sugar patients.Patients were stratified by eGFR into groups: eGFR <60 and eGFR>60ml/min. ADC and FA values in cortex and medulla were compared between controls and study groups. Statistical Analysis Used: Analysis of variance and Pearson correlation using SPSS 16 were performed. Results: There was significant difference of FA medulla in controls versus albuminuric and micro-albuminuric versus frank proteinuric patients (P < 0.001).Also, there was significant difference between cortical ADC values between normal, microalbuminuric/proteinuric groups (P = 0.010, P =0.000, respectively). Significant difference between medullary FA values of patients with eGFR >60 and eGFR < 60 versus normal controls (P < 0.001) was noted.With declining renal function from normal to CKD category 5, a negative correlation between medullary FA (r= -0.785, P = 0.001) and ADC cortex values (r= -0.436, P = 0.001) was noted. A strong positive correlation between medullary FA and cortex ADC with eGFR (r = 0.598 and 0.344, respectively) was noted. Conclusion: Medullary FA of diabetics with relatively intact kidney function were significantly lower than those of controls. Hence, drop in medullary FA values can be an indicator of early nephropathy/patients at risk where eGFR is in near normal range. Cortical ADC and medullary FA demonstrated a significant correlation with eGFR with the latter showing a stronger positive correlation.",
author = "Shimona Saini and Vikas Kumar and Prakashini Koteshwara",
year = "2018",
month = "4",
day = "1",
doi = "10.4103/ijri.IJRI_128_17",
language = "English",
volume = "28",
pages = "175--181",
journal = "Indian Journal of Radiology and Imaging",
issn = "0971-3026",
publisher = "Medknow Publications and Media Pvt. Ltd",
number = "2",

}

Role of diffusion tensor imaging in renal parenchymal changes. / Saini, Shimona; Kumar, Vikas; Koteshwara, Prakashini.

In: Indian Journal of Radiology and Imaging, Vol. 28, No. 2, 01.04.2018, p. 175-181.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Role of diffusion tensor imaging in renal parenchymal changes

AU - Saini, Shimona

AU - Kumar, Vikas

AU - Koteshwara, Prakashini

PY - 2018/4/1

Y1 - 2018/4/1

N2 - Context: Diffusion Tensor Imaging (DTI) is a reliable noninvasive tool to assess renal function with medullary Fractional Anisotropy (FA) values showing the most consistent results. Aims: Evaluation of FA, Apparent Diffusion Coefficient (ADC) for detecting diabetic nephropathy (DN) using 1.5-Tesla magnetic resonance imaging (MRI). To determine FA and ADC values in chronic kidney disease (CKD) patients and controls, and comparing these with estimated glomerular filtiration rate (eGFR) and categorizing the stage of CKD. Patients and Methods: Thirty nondiabetic volunteers underwent DTI.The study included 83 diabetics, 30 frank urine proteinuric, 30 micro-albuminuric, 23 normo-albuminuric with only raised blood sugar patients.Patients were stratified by eGFR into groups: eGFR <60 and eGFR>60ml/min. ADC and FA values in cortex and medulla were compared between controls and study groups. Statistical Analysis Used: Analysis of variance and Pearson correlation using SPSS 16 were performed. Results: There was significant difference of FA medulla in controls versus albuminuric and micro-albuminuric versus frank proteinuric patients (P < 0.001).Also, there was significant difference between cortical ADC values between normal, microalbuminuric/proteinuric groups (P = 0.010, P =0.000, respectively). Significant difference between medullary FA values of patients with eGFR >60 and eGFR < 60 versus normal controls (P < 0.001) was noted.With declining renal function from normal to CKD category 5, a negative correlation between medullary FA (r= -0.785, P = 0.001) and ADC cortex values (r= -0.436, P = 0.001) was noted. A strong positive correlation between medullary FA and cortex ADC with eGFR (r = 0.598 and 0.344, respectively) was noted. Conclusion: Medullary FA of diabetics with relatively intact kidney function were significantly lower than those of controls. Hence, drop in medullary FA values can be an indicator of early nephropathy/patients at risk where eGFR is in near normal range. Cortical ADC and medullary FA demonstrated a significant correlation with eGFR with the latter showing a stronger positive correlation.

AB - Context: Diffusion Tensor Imaging (DTI) is a reliable noninvasive tool to assess renal function with medullary Fractional Anisotropy (FA) values showing the most consistent results. Aims: Evaluation of FA, Apparent Diffusion Coefficient (ADC) for detecting diabetic nephropathy (DN) using 1.5-Tesla magnetic resonance imaging (MRI). To determine FA and ADC values in chronic kidney disease (CKD) patients and controls, and comparing these with estimated glomerular filtiration rate (eGFR) and categorizing the stage of CKD. Patients and Methods: Thirty nondiabetic volunteers underwent DTI.The study included 83 diabetics, 30 frank urine proteinuric, 30 micro-albuminuric, 23 normo-albuminuric with only raised blood sugar patients.Patients were stratified by eGFR into groups: eGFR <60 and eGFR>60ml/min. ADC and FA values in cortex and medulla were compared between controls and study groups. Statistical Analysis Used: Analysis of variance and Pearson correlation using SPSS 16 were performed. Results: There was significant difference of FA medulla in controls versus albuminuric and micro-albuminuric versus frank proteinuric patients (P < 0.001).Also, there was significant difference between cortical ADC values between normal, microalbuminuric/proteinuric groups (P = 0.010, P =0.000, respectively). Significant difference between medullary FA values of patients with eGFR >60 and eGFR < 60 versus normal controls (P < 0.001) was noted.With declining renal function from normal to CKD category 5, a negative correlation between medullary FA (r= -0.785, P = 0.001) and ADC cortex values (r= -0.436, P = 0.001) was noted. A strong positive correlation between medullary FA and cortex ADC with eGFR (r = 0.598 and 0.344, respectively) was noted. Conclusion: Medullary FA of diabetics with relatively intact kidney function were significantly lower than those of controls. Hence, drop in medullary FA values can be an indicator of early nephropathy/patients at risk where eGFR is in near normal range. Cortical ADC and medullary FA demonstrated a significant correlation with eGFR with the latter showing a stronger positive correlation.

UR - http://www.scopus.com/inward/record.url?scp=85049514010&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85049514010&partnerID=8YFLogxK

U2 - 10.4103/ijri.IJRI_128_17

DO - 10.4103/ijri.IJRI_128_17

M3 - Article

VL - 28

SP - 175

EP - 181

JO - Indian Journal of Radiology and Imaging

JF - Indian Journal of Radiology and Imaging

SN - 0971-3026

IS - 2

ER -