Static structural analysis of different stem designs used in total hip arthroplasty using finite element method

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Background: The Hip joint is the primary joint which gives stability to the human body. The wear and tear associated with age and other factors, require these joints to be replaced by implants using hip arthroplasty surgeries. Cobalt chromium alloy (CoCr), titanium alloy, stainless steel are some of the most common hip joint materials used for hip implants. The design requirement for hip joint implants are very stringent to avoid revision joint surgeries due to aseptic loosening. There are various choices in shapes and materials used for stem and acetabular designs. This makes it more difficult to make an informed decision on the type of design and material that can be used for hip implants. Methods: Circular, Oval, ellipse and trapezoidal designs with three individual cross sections (defined as profile 1, profile 2 and profile 3) are considered for the study. All models are modeled using CATIA V-6. Static structural analysis is performed using ANSYS R-19 to arrive at the best possible design and material combination for stem and acetabular cup. Results: It was found that, profile 2 of all the four designs has the lowest possible deformation and von Mises stress when compared to profile 1 and profile 2. In general, profile 2 with trapezoidal stem has best outcomes in terms of its mechanical properties. Besides, stem designed with material CoCr and its associated acetabular cup with CoC (ceramic on ceramic) material can produce an implant having better properties and longer durability. Conclusions: CoCr was found to be the preferred choice of material for stem design. It was also observed that, irrespective of material considered for the analysis profile 2 with trapezoidal stem showcased lesser deformation and von Mises stress over the other eleven models. For analysis involving acetabular cups, CoC implants exhibited better mechanical properties over the conventional CoPE (Ceramic on polyethylene) materials such as Ultra-high molecular weight polyethylene (UHMWPE). It is inferred from the findings of this study that, the profile 2 with trapezoidal stem design made of CoCr material and acetabular cup made of CoC material is best suited for hip joint implants.

Original languageEnglish
Article numbere01767
JournalHeliyon
Volume5
Issue number6
DOIs
Publication statusPublished - 01-06-2019

Fingerprint

Ceramics
Arthroplasty
Hip
Chromium Alloys
Hip Joint
Joints
Age Factors
Stainless Steel
Polyethylene
Titanium
Tears
Reoperation
Human Body

All Science Journal Classification (ASJC) codes

  • General

Cite this

@article{9fc7e4295d0f4c699edb8e72bc377c2b,
title = "Static structural analysis of different stem designs used in total hip arthroplasty using finite element method",
abstract = "Background: The Hip joint is the primary joint which gives stability to the human body. The wear and tear associated with age and other factors, require these joints to be replaced by implants using hip arthroplasty surgeries. Cobalt chromium alloy (CoCr), titanium alloy, stainless steel are some of the most common hip joint materials used for hip implants. The design requirement for hip joint implants are very stringent to avoid revision joint surgeries due to aseptic loosening. There are various choices in shapes and materials used for stem and acetabular designs. This makes it more difficult to make an informed decision on the type of design and material that can be used for hip implants. Methods: Circular, Oval, ellipse and trapezoidal designs with three individual cross sections (defined as profile 1, profile 2 and profile 3) are considered for the study. All models are modeled using CATIA V-6. Static structural analysis is performed using ANSYS R-19 to arrive at the best possible design and material combination for stem and acetabular cup. Results: It was found that, profile 2 of all the four designs has the lowest possible deformation and von Mises stress when compared to profile 1 and profile 2. In general, profile 2 with trapezoidal stem has best outcomes in terms of its mechanical properties. Besides, stem designed with material CoCr and its associated acetabular cup with CoC (ceramic on ceramic) material can produce an implant having better properties and longer durability. Conclusions: CoCr was found to be the preferred choice of material for stem design. It was also observed that, irrespective of material considered for the analysis profile 2 with trapezoidal stem showcased lesser deformation and von Mises stress over the other eleven models. For analysis involving acetabular cups, CoC implants exhibited better mechanical properties over the conventional CoPE (Ceramic on polyethylene) materials such as Ultra-high molecular weight polyethylene (UHMWPE). It is inferred from the findings of this study that, the profile 2 with trapezoidal stem design made of CoCr material and acetabular cup made of CoC material is best suited for hip joint implants.",
author = "Chethan K.N. and Mohammad Zuber and {Bhat N.}, Shyamasunder and {Shenoy B.}, Satish and {R. Kini}, Chandrakant",
year = "2019",
month = "6",
day = "1",
doi = "10.1016/j.heliyon.2019.e01767",
language = "English",
volume = "5",
journal = "Heliyon",
issn = "2405-8440",
publisher = "Elsevier BV",
number = "6",

}

TY - JOUR

T1 - Static structural analysis of different stem designs used in total hip arthroplasty using finite element method

AU - K.N., Chethan

AU - Zuber, Mohammad

AU - Bhat N., Shyamasunder

AU - Shenoy B., Satish

AU - R. Kini, Chandrakant

PY - 2019/6/1

Y1 - 2019/6/1

N2 - Background: The Hip joint is the primary joint which gives stability to the human body. The wear and tear associated with age and other factors, require these joints to be replaced by implants using hip arthroplasty surgeries. Cobalt chromium alloy (CoCr), titanium alloy, stainless steel are some of the most common hip joint materials used for hip implants. The design requirement for hip joint implants are very stringent to avoid revision joint surgeries due to aseptic loosening. There are various choices in shapes and materials used for stem and acetabular designs. This makes it more difficult to make an informed decision on the type of design and material that can be used for hip implants. Methods: Circular, Oval, ellipse and trapezoidal designs with three individual cross sections (defined as profile 1, profile 2 and profile 3) are considered for the study. All models are modeled using CATIA V-6. Static structural analysis is performed using ANSYS R-19 to arrive at the best possible design and material combination for stem and acetabular cup. Results: It was found that, profile 2 of all the four designs has the lowest possible deformation and von Mises stress when compared to profile 1 and profile 2. In general, profile 2 with trapezoidal stem has best outcomes in terms of its mechanical properties. Besides, stem designed with material CoCr and its associated acetabular cup with CoC (ceramic on ceramic) material can produce an implant having better properties and longer durability. Conclusions: CoCr was found to be the preferred choice of material for stem design. It was also observed that, irrespective of material considered for the analysis profile 2 with trapezoidal stem showcased lesser deformation and von Mises stress over the other eleven models. For analysis involving acetabular cups, CoC implants exhibited better mechanical properties over the conventional CoPE (Ceramic on polyethylene) materials such as Ultra-high molecular weight polyethylene (UHMWPE). It is inferred from the findings of this study that, the profile 2 with trapezoidal stem design made of CoCr material and acetabular cup made of CoC material is best suited for hip joint implants.

AB - Background: The Hip joint is the primary joint which gives stability to the human body. The wear and tear associated with age and other factors, require these joints to be replaced by implants using hip arthroplasty surgeries. Cobalt chromium alloy (CoCr), titanium alloy, stainless steel are some of the most common hip joint materials used for hip implants. The design requirement for hip joint implants are very stringent to avoid revision joint surgeries due to aseptic loosening. There are various choices in shapes and materials used for stem and acetabular designs. This makes it more difficult to make an informed decision on the type of design and material that can be used for hip implants. Methods: Circular, Oval, ellipse and trapezoidal designs with three individual cross sections (defined as profile 1, profile 2 and profile 3) are considered for the study. All models are modeled using CATIA V-6. Static structural analysis is performed using ANSYS R-19 to arrive at the best possible design and material combination for stem and acetabular cup. Results: It was found that, profile 2 of all the four designs has the lowest possible deformation and von Mises stress when compared to profile 1 and profile 2. In general, profile 2 with trapezoidal stem has best outcomes in terms of its mechanical properties. Besides, stem designed with material CoCr and its associated acetabular cup with CoC (ceramic on ceramic) material can produce an implant having better properties and longer durability. Conclusions: CoCr was found to be the preferred choice of material for stem design. It was also observed that, irrespective of material considered for the analysis profile 2 with trapezoidal stem showcased lesser deformation and von Mises stress over the other eleven models. For analysis involving acetabular cups, CoC implants exhibited better mechanical properties over the conventional CoPE (Ceramic on polyethylene) materials such as Ultra-high molecular weight polyethylene (UHMWPE). It is inferred from the findings of this study that, the profile 2 with trapezoidal stem design made of CoCr material and acetabular cup made of CoC material is best suited for hip joint implants.

UR - http://www.scopus.com/inward/record.url?scp=85067055856&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067055856&partnerID=8YFLogxK

U2 - 10.1016/j.heliyon.2019.e01767

DO - 10.1016/j.heliyon.2019.e01767

M3 - Article

AN - SCOPUS:85067055856

VL - 5

JO - Heliyon

JF - Heliyon

SN - 2405-8440

IS - 6

M1 - e01767

ER -