Structural characterization of green synthesized α-Fe2O3 nanoparticles using the leaf extract of Spondias dulcis

Ramesh Vinayagam, Shraddha Pai, Thivaharan Varadavenkatesan, Manoj Kumar Narasimhan, Selvaraju Narayanasamy, Raja Selvaraj

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Microporous α-Fe2O3 nanoparticles were synthesized by employing the extract of Spondias dulcis leaves by green-synthesis technique for the first time. The nanoparticles were characterized by many techniques. A continual absorption band without any peak in UV-vis spectrum and a strong signal for iron and oxygen atoms in EDS confirmed the formation of iron-oxide nanoparticles. Rod-like structures with few aggregations due to magnetic interactions were witnessed in FE-SEM image. Specific peaks belonging to α-Fe2O3 nanoparticles were observed in XRD spectrum, and they were very pure and crystalline with a mean particle diameter of 11.38 nm. XPS analysis confirmed oxidation state of Fe and O and portrayed the presence of α-Fe2O3. A relatively higher surface area (190.84 m2/g) than reported green-synthesized α-Fe2O3 nanoparticles has been obtained by BET analysis, and the pores were microscopic (0.465 nm) in nature. Signature bands for Fe-O (1136 cm−1) and organic moieties stretching vibrations were confirmed by FTIR spectrum. The point of zero charge was determined as 7.97 which is concordant with the published value for α-Fe2O3. The thermal stability was ascertained by TGA which showed 28% weight loss. The synthesized α-Fe2O3 were superparamagnetic with a very high saturation magnetization value of 34.46 emu/g. Besides, a probable mechanism for the synthesis of microporous α-Fe2O3 has been proposed. Therefore, the highly pure, crystalline, and microporous α-Fe2O3 with high surface area, synthesized by this green synthesis method could play a significant role in various fields.

Original languageEnglish
Article number100618
JournalSurfaces and Interfaces
Volume20
DOIs
Publication statusPublished - 09-2020

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Condensed Matter Physics
  • Physics and Astronomy(all)
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Structural characterization of green synthesized α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles using the leaf extract of Spondias dulcis'. Together they form a unique fingerprint.

Cite this