Support Vector Regression for Mobile Target Localization in Indoor Environments

Satish R. Jondhale, Vijay Mohan, Bharat Bhushan Sharma, Jaime Lloret, Shashikant V. Athawale

Research output: Contribution to journalArticlepeer-review

Abstract

Trilateration‐based target localization using received signal strength (RSS) in a wireless sensor network (WSN) generally yields inaccurate location estimates due to high fluctuations in RSS measurements in indoor environments. Improving the localization accuracy in RSS‐based systems has long been the focus of a substantial amount of research. This paper proposes two range‐free algorithms based on RSS measurements, namely support vector regression (SVR) and SVR + Kalman filter (KF). Unlike trilateration, the proposed SVR‐based localization scheme can directly estimate target locations using field measurements without relying on the computation of distances. Unlike other state‐of‐the‐art localization and tracking (L&T) schemes such as the generalized regression neural network (GRNN), SVR localization architecture needs only three RSS measurements to locate a mobile target. Furthermore, the SVR based localization scheme was fused with a KF in order to gain further refinement in target location estimates. Rigorous simulations were carried out to test the localization efficacy of the proposed algorithms for noisy radio frequency (RF) channels and a dynamic target motion model. Benefiting from the good generalization ability of SVR, simulation results showed that the presented SVR‐based localization algorithms demonstrate superior perfor-mance compared to trilateration‐ and GRNN‐based localization schemes in terms of indoor localization performance.

Original languageEnglish
Article number358
JournalSensors
Volume22
Issue number1
DOIs
Publication statusPublished - 01-01-2022

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Information Systems
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Support Vector Regression for Mobile Target Localization in Indoor Environments'. Together they form a unique fingerprint.

Cite this