Synthesis, docking and anti-tumor activity of β-L-1,3-thiazolidine pyrimidine nucleoside analogues

S.N. Sriharsha, K.S. Ranganath Pai, Suhas [Unknown], S. Shashikanth, N. Chandra, K.R. Prabhu

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

In the search for effective, selective, and nontoxic antiviral and antitumor agents, a variety of strategies have been devised to design nucleoside analogues. Here we, have described the versatile synthesis of β-L-1,3-thiazolidine nucleoside analogues. These analogues are all derived from the key stereochemically defined intermediate N-tert-butoxy-carbonyl-4-hydroxymethyl-1,3-thiazolidine-2-ol which was accessible in 57% yield starting from L-Cysteine methylester hydrochloride. N-tert-butoxycarbonyl-2-acyloxy-4-trityloxymethyl-1,3-thiazolidine was coupled with the pyrimidine bases in the presence of Lewis acids stannic chloride or trimethyl silyl triflate following Vorbruggen procedure. Proof of the structure and configuration was obtained through 1H NMR, 13C NMR, Mass, elemental analysis and NOE experiments. Docking and antitumor activity of these nucleoside analogues are also reported. © 2007 Bentham Science Publishers Ltd.
Original languageEnglish
Pages (from-to)425-432
Number of pages8
JournalMedicinal Chemistry
Volume3
Issue number5
DOIs
Publication statusPublished - 2007

Fingerprint

Thiazolidines
Pyrimidine Nucleosides
Nucleosides
Cysteine
Lewis Acids
Neoplasms
Antineoplastic Agents
Antiviral Agents

Cite this

Sriharsha, S.N. ; Ranganath Pai, K.S. ; [Unknown], Suhas ; Shashikanth, S. ; Chandra, N. ; Prabhu, K.R. / Synthesis, docking and anti-tumor activity of β-L-1,3-thiazolidine pyrimidine nucleoside analogues. In: Medicinal Chemistry. 2007 ; Vol. 3, No. 5. pp. 425-432.
@article{d97d4c3132304f2da0e96e8a4caedf32,
title = "Synthesis, docking and anti-tumor activity of β-L-1,3-thiazolidine pyrimidine nucleoside analogues",
abstract = "In the search for effective, selective, and nontoxic antiviral and antitumor agents, a variety of strategies have been devised to design nucleoside analogues. Here we, have described the versatile synthesis of β-L-1,3-thiazolidine nucleoside analogues. These analogues are all derived from the key stereochemically defined intermediate N-tert-butoxy-carbonyl-4-hydroxymethyl-1,3-thiazolidine-2-ol which was accessible in 57{\%} yield starting from L-Cysteine methylester hydrochloride. N-tert-butoxycarbonyl-2-acyloxy-4-trityloxymethyl-1,3-thiazolidine was coupled with the pyrimidine bases in the presence of Lewis acids stannic chloride or trimethyl silyl triflate following Vorbruggen procedure. Proof of the structure and configuration was obtained through 1H NMR, 13C NMR, Mass, elemental analysis and NOE experiments. Docking and antitumor activity of these nucleoside analogues are also reported. {\circledC} 2007 Bentham Science Publishers Ltd.",
author = "S.N. Sriharsha and {Ranganath Pai}, K.S. and Suhas [Unknown] and S. Shashikanth and N. Chandra and K.R. Prabhu",
note = "Cited By :2 Export Date: 10 November 2017 Correspondence Address: Shashikanth, S.; Department of Studies in Chemistry, University of Mysore, Manasagangothri, Mysore 570 006, India; email: skanth1@rediffmail.com Chemicals/CAS: cisplatin, 15663-27-1, 26035-31-4, 96081-74-2; stannic chloride, 7646-78-8; thymidylate synthase, 9031-61-2; trifluoromethanesulfonic acid, 1493-13-6; Antineoplastic Agents; Pyrimidine Nucleosides; Thiazolidines References: Cassillas, T., Delicado, E.G., Carmona, F.G., Portugal, M.T.M., (1993) Biochemistry, 32, p. 14203; Verri, A., Montecucco, A., Gosselin, G., Imbach, J.L., Spadari, S., (1999) Biochem. J, 337, p. 585; Gati, W.P., Dagnino, E.J., Patterson, A.R.P., (1989) Biochem. J, 263, p. 957; Heidelberger, C., Chaudhuri, N.K., Danenberg, P., Mooren, D., Griesbach, L., Duschinsky, R., Schnitzer, R.J., Schreiner, J., (1957) Nature, 179, p. 663; Grem, J., (2000) Invest. New Drugs, 18, p. 299; Longley, D.B., Harkin, D.P., Johnston, P.G., (2003) Nat. Cancer, 3, p. 330; Carreras, C.W., Santi, D.V., (1995) Annu. Rev. Biochem, 64, p. 721; Hatse, S., De Clercq, E., Balzarini, J., (1999) Biochem. Pharm, 58, p. 539; Van Triest, B., Pinedo, H.M., Giaccone, G., Peters, G.J., (2000) Ann. Oncol, 11, p. 385; Costi, M.P., Tondi, D., Rinaldi, M., Barlocco, D., Pecorari, P., Soragni, F., Venturelli, A., Stroud, R.M., (2002) Biochim. Biophys. Acta, 1587, p. 206; Peterson, M.L., Vince, R., (1991) J. Med. Chem, 37, p. 2787; Lesyk, B.S., Zimenkovsky, R.V., Kutsyk, D.V., Atamanyuk, G.M., (2003) Semenciv Farmacevtychnyj zhurnal, 2, p. 52; Vorbr{\"u}ggen, H., Hoefle, G., (1981) Chem. Ber, 114, p. 1256; Basel, Y., Hassner, A., (2000) J. Org. Chem, 65, p. 6368; Brown, H.C., Kim, S.C., Krishnamurthy, S., (1980) J. Org. Chem, 45, p. 1; Chong, Y., Chou, H., Choi, H., Schinazi, R., Chu, C., (2002) J. Med. Chem, 45, p. 4888; Ng, K., Orgel, L.E., (1989) J. Med. Chem, 32, p. 1754; Woo-Baeg, C.; Lawrence, J.; Wilson, Suresh, Y.; Dennis, C.L. J. Am. Chem. Soc., 1991, 113, 9377; Barral, K., Balzarini, J., Neyts, J., Clercq, E.D., Robert, C.H., Michel, C., (2006) J. Med. Chem, 49, p. 43; Morris, G.M., Goodsell, D.S., Halliday, R.S., (1998) J. Comput. Chem, 19, p. 1639; Uma Devi, P.R., Solomon, F.E., (1998) Ind. J. Exp. Biol, 36, p. 891; Kuttan, P., Bhanumathi, K., Nirmala, M.C.G., (1985) Cancer Lett, 29, p. 2; Echardt, A.E., Malone, B.N., Goldstein, I., (1982) Cancer Res, 42, p. 2977; Clarkson, B.D., Burchenal, J.H., (1965) Prog. Clin. Cancer, 1, p. 625; Orberlling, C., Guerin, M., (1954) Adv. Cancer Res, 2, p. 353; Ghosh, M.N., (1984) Fundamentals of experimental Pharmacology, p. 153. , 2nd Edition; Umadevi, P., Emerson, S.F., Sharada, A:C (1994) Indian J. Exp. Biol, 32, p. 523; Rusia, U., Swarup, K.S., (1988) Routine hematological tests- in Medical Laboratory Technology, p. 228. , Mukherjee K. L, ed, New Delhi, Tata Mcgraw-Hill Pub. Com. Ltd",
year = "2007",
doi = "10.2174/157340607781745500",
language = "English",
volume = "3",
pages = "425--432",
journal = "Medicinal Chemistry",
issn = "1573-4064",
publisher = "Bentham Science Publishers B.V.",
number = "5",

}

Synthesis, docking and anti-tumor activity of β-L-1,3-thiazolidine pyrimidine nucleoside analogues. / Sriharsha, S.N.; Ranganath Pai, K.S.; [Unknown], Suhas; Shashikanth, S.; Chandra, N.; Prabhu, K.R.

In: Medicinal Chemistry, Vol. 3, No. 5, 2007, p. 425-432.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Synthesis, docking and anti-tumor activity of β-L-1,3-thiazolidine pyrimidine nucleoside analogues

AU - Sriharsha, S.N.

AU - Ranganath Pai, K.S.

AU - [Unknown], Suhas

AU - Shashikanth, S.

AU - Chandra, N.

AU - Prabhu, K.R.

N1 - Cited By :2 Export Date: 10 November 2017 Correspondence Address: Shashikanth, S.; Department of Studies in Chemistry, University of Mysore, Manasagangothri, Mysore 570 006, India; email: skanth1@rediffmail.com Chemicals/CAS: cisplatin, 15663-27-1, 26035-31-4, 96081-74-2; stannic chloride, 7646-78-8; thymidylate synthase, 9031-61-2; trifluoromethanesulfonic acid, 1493-13-6; Antineoplastic Agents; Pyrimidine Nucleosides; Thiazolidines References: Cassillas, T., Delicado, E.G., Carmona, F.G., Portugal, M.T.M., (1993) Biochemistry, 32, p. 14203; Verri, A., Montecucco, A., Gosselin, G., Imbach, J.L., Spadari, S., (1999) Biochem. J, 337, p. 585; Gati, W.P., Dagnino, E.J., Patterson, A.R.P., (1989) Biochem. J, 263, p. 957; Heidelberger, C., Chaudhuri, N.K., Danenberg, P., Mooren, D., Griesbach, L., Duschinsky, R., Schnitzer, R.J., Schreiner, J., (1957) Nature, 179, p. 663; Grem, J., (2000) Invest. New Drugs, 18, p. 299; Longley, D.B., Harkin, D.P., Johnston, P.G., (2003) Nat. Cancer, 3, p. 330; Carreras, C.W., Santi, D.V., (1995) Annu. Rev. Biochem, 64, p. 721; Hatse, S., De Clercq, E., Balzarini, J., (1999) Biochem. Pharm, 58, p. 539; Van Triest, B., Pinedo, H.M., Giaccone, G., Peters, G.J., (2000) Ann. Oncol, 11, p. 385; Costi, M.P., Tondi, D., Rinaldi, M., Barlocco, D., Pecorari, P., Soragni, F., Venturelli, A., Stroud, R.M., (2002) Biochim. Biophys. Acta, 1587, p. 206; Peterson, M.L., Vince, R., (1991) J. Med. Chem, 37, p. 2787; Lesyk, B.S., Zimenkovsky, R.V., Kutsyk, D.V., Atamanyuk, G.M., (2003) Semenciv Farmacevtychnyj zhurnal, 2, p. 52; Vorbrüggen, H., Hoefle, G., (1981) Chem. Ber, 114, p. 1256; Basel, Y., Hassner, A., (2000) J. Org. Chem, 65, p. 6368; Brown, H.C., Kim, S.C., Krishnamurthy, S., (1980) J. Org. Chem, 45, p. 1; Chong, Y., Chou, H., Choi, H., Schinazi, R., Chu, C., (2002) J. Med. Chem, 45, p. 4888; Ng, K., Orgel, L.E., (1989) J. Med. Chem, 32, p. 1754; Woo-Baeg, C.; Lawrence, J.; Wilson, Suresh, Y.; Dennis, C.L. J. Am. Chem. Soc., 1991, 113, 9377; Barral, K., Balzarini, J., Neyts, J., Clercq, E.D., Robert, C.H., Michel, C., (2006) J. Med. Chem, 49, p. 43; Morris, G.M., Goodsell, D.S., Halliday, R.S., (1998) J. Comput. Chem, 19, p. 1639; Uma Devi, P.R., Solomon, F.E., (1998) Ind. J. Exp. Biol, 36, p. 891; Kuttan, P., Bhanumathi, K., Nirmala, M.C.G., (1985) Cancer Lett, 29, p. 2; Echardt, A.E., Malone, B.N., Goldstein, I., (1982) Cancer Res, 42, p. 2977; Clarkson, B.D., Burchenal, J.H., (1965) Prog. Clin. Cancer, 1, p. 625; Orberlling, C., Guerin, M., (1954) Adv. Cancer Res, 2, p. 353; Ghosh, M.N., (1984) Fundamentals of experimental Pharmacology, p. 153. , 2nd Edition; Umadevi, P., Emerson, S.F., Sharada, A:C (1994) Indian J. Exp. Biol, 32, p. 523; Rusia, U., Swarup, K.S., (1988) Routine hematological tests- in Medical Laboratory Technology, p. 228. , Mukherjee K. L, ed, New Delhi, Tata Mcgraw-Hill Pub. Com. Ltd

PY - 2007

Y1 - 2007

N2 - In the search for effective, selective, and nontoxic antiviral and antitumor agents, a variety of strategies have been devised to design nucleoside analogues. Here we, have described the versatile synthesis of β-L-1,3-thiazolidine nucleoside analogues. These analogues are all derived from the key stereochemically defined intermediate N-tert-butoxy-carbonyl-4-hydroxymethyl-1,3-thiazolidine-2-ol which was accessible in 57% yield starting from L-Cysteine methylester hydrochloride. N-tert-butoxycarbonyl-2-acyloxy-4-trityloxymethyl-1,3-thiazolidine was coupled with the pyrimidine bases in the presence of Lewis acids stannic chloride or trimethyl silyl triflate following Vorbruggen procedure. Proof of the structure and configuration was obtained through 1H NMR, 13C NMR, Mass, elemental analysis and NOE experiments. Docking and antitumor activity of these nucleoside analogues are also reported. © 2007 Bentham Science Publishers Ltd.

AB - In the search for effective, selective, and nontoxic antiviral and antitumor agents, a variety of strategies have been devised to design nucleoside analogues. Here we, have described the versatile synthesis of β-L-1,3-thiazolidine nucleoside analogues. These analogues are all derived from the key stereochemically defined intermediate N-tert-butoxy-carbonyl-4-hydroxymethyl-1,3-thiazolidine-2-ol which was accessible in 57% yield starting from L-Cysteine methylester hydrochloride. N-tert-butoxycarbonyl-2-acyloxy-4-trityloxymethyl-1,3-thiazolidine was coupled with the pyrimidine bases in the presence of Lewis acids stannic chloride or trimethyl silyl triflate following Vorbruggen procedure. Proof of the structure and configuration was obtained through 1H NMR, 13C NMR, Mass, elemental analysis and NOE experiments. Docking and antitumor activity of these nucleoside analogues are also reported. © 2007 Bentham Science Publishers Ltd.

U2 - 10.2174/157340607781745500

DO - 10.2174/157340607781745500

M3 - Article

VL - 3

SP - 425

EP - 432

JO - Medicinal Chemistry

JF - Medicinal Chemistry

SN - 1573-4064

IS - 5

ER -