Targeting SARS-CoV-2 RNA-dependent RNA polymerase: An in silico drug repurposing for COVID-19

Yogendra Nayak, Krishnaprasad Baby, Swastika Maity, Chetan H. Mehta, Akhil Suresh, Usha Y. Nayak

Research output: Contribution to journalArticlepeer-review

Abstract

Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), took more lives than combined epidemics of SARS, MERS, H1N1, and Ebola. Currently, the prevention and control of spread are the goals in COVID-19 management as there are no specific drugs to cure or vaccines available for prevention. Hence, the drug repurposing was explored by many research groups, and many target proteins have been examined. The major protease (M pro), and RNA-dependent RNA polymerase (RdRp) are two target proteins in SARS-CoV-2 that have been validated and extensively studied for drug development in COVID-19. The RdRp shares a high degree of homology between those of two previously known coronaviruses, SARS-CoV and MERS-CoV. Methods: In this study, the FDA approved library of drugs were docked against the active site of RdRp using Schrodinger's computer-aided drug discovery tools for in silico drug-repurposing. Results: We have shortlisted 14 drugs from the Standard Precision docking and interaction-wise study of drug-binding with the active site on the enzyme. These drugs are antibiotics, NSAIDs, hypolipidemic, coagulant, thrombolytic, and anti-allergics. In molecular dynamics simulations, pitavastatin, ridogrel and rosoxacin displayed superior binding with the active site through ARG555 and divalent magnesium. Conclusion: Pitavastatin, ridogrel and rosoxacin can be further optimized in preclinical and clinical studies to determine their possible role in COVID-19 treatment.

Original languageEnglish
Article number1166
JournalF1000Research
Volume9
DOIs
Publication statusPublished - 2020

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'Targeting SARS-CoV-2 RNA-dependent RNA polymerase: An in silico drug repurposing for COVID-19'. Together they form a unique fingerprint.

Cite this